【机器学习算法】——决策树:CART

理论

CART全称叫Classification and Regression Tree,即分类与回归树。CART假设决策树是二叉树,内部结点特征的取值只有“是”和“否”,左分支是取值为“是”的分支,有分支则相反。这样的决策树等价于递归地二分每个特征。
CART分类回归树可以做分类或者回归。

  • 如果待预测结果是离散型数据,则CART生成分类决策树;
  • 如果待预测结果是连续型数据,则CART生成回归决策树。
    CART分类树使用==基尼指数(gini)==作为节点划分依据。
    CART决策树的生成就是递归地构建二叉决策树的过程,对回归树用平方误差最小化准则,对分类树用基尼指数最小化准则,进行特征选择,生成二叉树
    简而言之:选取Gini指数最小的分支属性作为根节点的分支属性!!!
    学习视频:【【五分钟机器学习】可视化的决策过程:决策树 Decision Tree】

sklearn 库实现

  1. 安装库文件,用于生成二叉树的图:
    pip install graphviz

  2. 下载graphviz安装包进行本地安装:参考学习

  3. 重启pycharm。

  4. 写代码:
    决策树需要从`from sklearn import tree’导入

clf = tree.DecisionTreeClassifier(criterion='gini'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值