【机器学习算法】——逻辑回归

逻辑回归理解

  • 逻辑回归是用来二分类的! 是在线性回归模型之后加了一个激活函数(Sigmoid)将预测值归一化到【0~1】之间,变成概率值。
    在这里插入图片描述

  • 一般计算其中一个类别的概率P,自然会得到另一个类别的概率1-P。假如一个人是女生的概率是0.7,是男生的概率是多少呢?自然是0.3。那你会认为这个人是男生还是女生呢?当时是女生!一般认为概率最大的类别为分类结果。

损失函数

  • MSE loss:计算数值之间的差异 (线性回归)
  • BCE Loss:计算分布之间的差异(逻辑回归)
    在这里插入图片描述
    在这里插入图片描述

代码

# 导入必要的库
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

# 准备数据
x_data = [1.0], [2.0], [3.0]
y_data = [0], [0], [1]

# 创建并拟合逻辑回归模型
model = LogisticRegression()
model.fit(x_data, y_data )

# 在测试集上进行预测
y_pred = model.predict(x_data)# predict预测的是值,可能是:[0,0,1]

# 计算准确率
accuracy = accuracy_score(y_data, y_pred)
print("Accuracy:", accuracy)


# 绘制决策边界
x = np.linspace(0, 10, 200).reshape(-1,1<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值