Revisiting Graph-Based Fraud Detection in Sight of Heterophily and Spectrum

AAAI24
推荐指数: #paper/⭐
领域:异常检测

摘要

这篇文章是关于一种新型的基于图神经网络(GNN)的欺诈检测方法,称为SEC-GFD(Spectrum-Enhanced and Environment-Constrainted Graph Fraud Detector)。文章首先讨论了基于图的欺诈检测(GFD)的重要性和挑战性,特别是考虑到欺诈图通常具有异质性(heterophily)的特点,即欺诈节点与其邻居节点的类别标签或特征往往不同。这使得许多传统的GNN模型表现不佳,因为它们通常假设同质性(homophily)。

胡言乱语

直接看下图:其实就是把高通,低通,高通滤波器的高阶组成了混通滤波器,然后再用低通滤波器与KNN图的限制视角来限制整个过程。(第二个的逻辑没有想明白,感觉只是简单的组合)。因此,只给了一颗星

请添加图片描述

全局框架

混合带通滤波器

为了将频谱划分为合适的频段,我们使用BWGNN作为我们的backborn
W p , q = U β p , q ∗ ( Λ ) U T = ( L 2 ) p ( I − L 2 ) q 2 B ( p + 1 , q + 1 ) , \mathcal{W}_{p,q}=U\beta_{p,q}^*(\Lambda)U^T=\frac{(\frac L2)^p(I-\frac L2)^q}{2B(p+1,q+1)}, Wp,q=Uβp,q(Λ)UT=2B(p+1,q+1)(2L)p(I2L)q,
其中, p + q = C p+q=C p+q=C
解耦光谱进入C+1个频谱区域
W = ( W 0 C , W 1 C − 1 , ⋯   , W C 0 ) . \mathcal{W}=(W_{0 C},W_{1 C-1},\cdots,W_{C 0}). W=(W0C,W1C1,,WC0).
但是,这样做,低阶邻居的高阶信号会缺乏。因此,我们使用如下filter去过滤:
R 1 : F H 1 ε I − A ~ = ( ε − 1 ) I + L , R 2 : F H 2 = ( ε I − A ~ ) 2 = ( ( ε − 1 ) I + L ) 2 , R C − 1 : F H C − 1 = ( ε I − A ~ ) C − 1 = ( ( ε − 1 ) I + L ) C − 1 . \begin{aligned} R_{1}:\mathcal{F}_{H}^{1}& \varepsilon I-\tilde{A}=(\varepsilon-1)I+L, \\ R_2:\mathcal{F}_{H}^{2}& =(\varepsilon I-\tilde{A})^2=((\varepsilon-1)I+L)^2, \\ R_{C-1}:\mathcal{F}_{H}^{C-1}& =(\varepsilon I-\tilde{A})^{C-1}=((\varepsilon-1)I+L)^{C-1}. \end{aligned} R1:FH1R2:FH2RC1:FHC1εIA~=(ε1)I+L,=(εIA~)2=((ε1)I+L)2,=(εIA~)C1=((ε1)I+L)C1.
下一步,我们使用拼接操作去合并更多的信息:
H y b r i d = C o n c a t ( W , R ) = ( W 0 , C , W 1 , C − 1 , ⋯   , W C , 0 ⏞ (C+1) Band-pass , R 1 , ⋯   , R C − 1 ⏞ (C-1) High-pass ) . \begin{aligned}&Hybrid=Concat(\mathcal{W},\mathcal{R})\\&=(\overbrace{W_{0,C},W_{1,C-1},\cdots,W_{C,0}}^{\text{(C+1) Band-pass}},\overbrace{R_{1},\cdots,R_{C-1}}^{\text{(C-1) High-pass}}).\end{aligned} Hybrid=Concat(W,R)=(W0,C,W1,C1,,WC,0 (C+1) Band-pass,R1,,RC1 (C-1) High-pass).
消息聚合函数对于每个band的消息分别传播:
H 0 = M L P ( X ) , B i = W i , C − i H 0 H j = R j H 0 , H = f a g g ( B 0 , ⋯   , B C , H 1 , ⋯   , H C − 1 ) , \begin{aligned} &H_{0} =MLP(X), \\ &\mathcal{B}_{i} =W_{i,C-i}H_0\quad\mathcal{H}_j=R_jH_0, \\ &\text{H} =f_{agg}(\mathcal{B}_{0},\cdots,\mathcal{B}_{C},\mathcal{H}_{1},\cdots,\mathcal{H}_{C-1}), \end{aligned} H0=MLP(X),Bi=Wi,CiH0Hj=RjH0,H=fagg(B0,,BC,H1,,HC1),
我们使用和BWGNN一样的加权CE-loss来训练模型:
L h y b r i d = ∑ v ∈ V [ δ y v log ⁡ p v + ( 1 − y v ) log ⁡ ( 1 − p v ) ] , \mathcal{L}_{hybrid}=\sum_{v\in\mathcal{V}}\left[\delta y_v\log p_v+(1-y_v)\log\left(1-p_v\right)\right], Lhybrid=vV[δyvlogpv+(1yv)log(1pv)],
δ \delta δ 表示检测比

对模型的本地限制:

我们定义如下传播函数:
h t ( l + 1 ) = U P D A T E ( h t ( l ) , A G G ( { h v ( l ) : v ∈ N t } ) ) h_t^{(l+1)}=\mathrm{UPDATE}\left(h_t^{(l)},\mathrm{AGG}\left(\{h_v^{(l)}:v\in\mathcal{N}_t\}\right)\right) ht(l+1)=UPDATE(ht(l),AGG({hv(l):vNt}))
H t n e i g h = A G G ( h t 1 , h t 2 , . . . , h t L ) , H_{t}^{neigh}=\mathrm{AGG}(h_{t}^{1},h_{t}^{2},...,h_{t}^{L}), Htneigh=AGG(ht1,ht2,...,htL),
这个函数其实就相当于一个简单的SGC,实验中常取2或者3层
我们也使用KNN视图:
H t k n n = f m e a n ( { x u ∣ ∀ u ∈ K t } ) = 1 ∣ K t ∣ ∑ u ∈ K t x u . H_t^{knn}=f_{mean}(\{\mathbf{x}_u|\forall u\in K_t\})=\frac{1}{|K_t|}\sum_{u\in K_t}\mathbf{x}_u. Htknn=fmean({xu∣∀uKt})=Kt1uKtxu.
最终,我们设计了一个限制损失函数: L e n v \mathcal{L}_{env} Lenv
L env = − log ⁡ ( 1 ∣ V n ∣ ∑ v i ∈ V n e v i sim ( H v i neigh , H v i k n n ) 1 ∣ V a ∣ ∑ v j ∈ V a e v j sim ( H v j neigh , H v j k n n ) ) , , \mathcal{L}_{\text{env}}=-\log\left(\frac{\frac{1}{|\mathcal{V}_{n}|}\sum_{v_{i}\in\mathcal{V}_{n}} e_{v_{i}}^{\text{sim}(H_{v_{i}}^{\text{neigh}}, H_{v_{i}}^{k n n})}}{\frac{1}{|\mathcal{V}_{a}|}\sum_{v_{j}\in\mathcal{V}_{a}} e_{v_{j}}^{\text{sim}(H_{v_{j}}^{\text{neigh}}, H_{v_{j}}^{k n n})}}\right),, Lenv=log Va1vjVaevjsim(Hvjneigh,Hvjknn)Vn1viVnevisim(Hvineigh,Hviknn) ,,

最终欺诈损失:

L = α L h y b r i d + ( 1 − α ) L e n v . \mathcal{L}=\alpha\mathcal{L}_{hybrid}+(1-\alpha)\mathcal{L}_{env}. L=αLhybrid+(1α)Lenv.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值