无刷直流电机矢量控制(三):坐标变换

        以无刷直流电机为例,在矢量控制中,因为需要从转子角度对电机进行控制,所以需要对定子三相电流进行坐标变换,在旋转坐标系下对转矩和磁场进行解耦控制。控制输出需经过坐标反变换,在静止坐标系下生成电机驱动电路的控制信号。

1、Clarke变换和Park变换

        将U、V、W三相电流转换为dq坐标系下的分量,其原理如图1中所示,即将静止坐标系下的IU、IV、IW在旋转的dq坐标轴上进行分解,合成新的d轴分量和q轴分量。

图1 dq变换原理示意

        如图1中所示,dq旋转坐标系下电流分量的表达式为:

I_{d}=\frac{2}{3}[\cos\theta\times I_{U}+\cos(\theta-120^{\circ})\times I_{V}+\cos(\theta+120^{\circ})\times I_{W}]

I_{q}=\frac{2}{3}[-\sin\theta\times I_{U}-\sin(\theta-120^{\circ})\times I_{V}-\sin(\theta+120^{\circ})\times I_{W}]

        其中,θ为d轴和IU之间的角度,因为dq轴坐标系在不断旋转,所以θ随电机旋转而变化。

        实际在MCU中实现坐标变换时,一般习惯性将上述分解过程分为两个步骤,即通常意义上的Clarke变换和Park变换。

1)Clarke变换

        在Clarke变换中,首先将U、V、W相的电流变换为静止的αβ坐标系下的分量,如图2中所示。其中α轴和β轴正交,与dq坐标系不同,αβ坐标系为静止坐标系,α轴与U相同方向。αβ坐标系下的电流分量表达式为:

I_{\alpha}=\frac{2}{3}(\cos0\times I_{U}+\cos120^{\circ}\times I_{V}+\cos240^{\circ}\times I_{W})=\frac{2}{3}\times(I_{U}-\frac{1}{2}\times I_{V}-\frac{1}{2}\times I_{W})

I_{\beta}=\frac{2}{3}(\sin0\times I_{U}+\sin120^{\circ}\times I_{V}+\sin240^{\circ}\times I_{W})=\frac{2}{3}\times(\frac{\sqrt{3}}{2}\times I_{V}-\frac{\sqrt{3}}{2}\times I_{W})

图2 Clarke变换

2)Park变换

        接下来,再将αβ静止坐标分量变换为dq旋转坐标系下的分量,如图3中所示。d轴与磁体同方向,q轴与d轴垂直。dq坐标系下的电流分量表示为:

I_{d}=\cos\theta\times I_{\alpha}+\sin\theta\times I_{\beta}

I_{q}=-\sin\theta\times I_{\alpha}+\cos\theta\times I_{\beta}

图3 Park变换

        在Clarke变换和Park变换中,乘以2/3的目的在于保持变换前后电流的幅值保持不变,这种相对变换只是为了计算和理解的方便,从理论上不会影响闭环控制的结果。

2、Park逆变换和空间矢量变换

1)Park逆变换

        Park逆变换用于将闭环控制(电流环)的结果(Vd和Vq)从dq旋转坐标系变换为αβ静止坐标系,计算公式为:

V_{\alpha}=\cos\theta\times V_{d}-\sin\theta\times V_{q}

V_{\beta}=\sin\theta\times V_{d}+\cos\theta\times V_{q}

2)空间矢量变换

        为了将Vα和Vβ转换为控制三相驱动电路的信号,需要对其进行空间矢量变换。其基本原理为:在一个PWM周期内,三相驱动电路中,上桥臂(u、v、w)和下桥臂(x、y、z)晶体管的开关组合有8中,除(000)和(111)之外,有6种电压矢量V1-V6对磁场的形成有贡献。所谓矢量控制,指的就是以这6种电压矢量为参考,构建包含6个区段的向量空间,根据Vα和Vβ的合成矢量V所在的区段,利用该区段的两个相邻矢量对V进行分解,得到在两个电压矢量上的分量。最后计算两个电压矢量的作用时间,生成三相驱动电路的控制信号波形。

        以合成矢量V位于区段1时为例,变换过程如图4种所示。

图4 空间矢量变换

        根据图4可得:

{V_2}'=\sqrt{3}\times V_{\beta}

{V_1}'=\frac{3}{2}\times V_{\alpha}-\frac{\sqrt{3}}{2}\times V_{\beta}

        根据PWM调制原理,若直流电压为VDC,PWM周期的一半为T,则

{V_1}'=\frac{t_{1}}{T}\times V_{DC}

{V_2}'=\frac{t_{2}}{T}\times V_{DC}

        可以求得t1和t2,且

t_{3}=T-t_{1}-t_{2}

        区段1的PWM波形如图5种所示。其中若V0和V7发生的时间分别为t3/2,则为三相调制;若V0发生的时间为t3,V7发生的时间为0,则为二相调制。

图5 区段1PWM波形

参考文献

[1]江崎雅康. 无刷直流电机矢量控制技术[M]. 北京: 科学出版社, 2019.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Forster-C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值