无刷直流电机矢量控制(四):基于滑模观测器的无传感器控制

本文介绍了一种用于无刷直流电机转子位置估算的滑模观测器(SMO)控制方法。通过分析电机的电压方程并设计滑模观测器,实现了在中高转速下的无位置传感器控制。文中详细阐述了SMO的工作原理,并提供了MATLAB/Simulink中的建模与仿真结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        在越来越多的应用场景中,无刷直流电机开始采用无位置传感器的控制方式。无刷直流电机运行于中高转速时,可以利用反电势信号估算转子位置,具体实现的方法不止一种,应用较多的是滑模观测器法。

        本文整理了该方法的基本原理,介绍了在MATLAB/Simulink中的建模和仿真过程,最后附上完整的模型文件。

一、基本原理

        滑模观测器(下文简称SMO)是基于滑模变结构控制方法的一种状态观测器。其针对无刷直流电机转子位置估算的实现过程如下。

        假设采用矢量控制的无刷直流电机d轴电感和q轴电感相等(对于PMSM而言该假设成立),即Ld=Lq=L,可以写出无刷直流电机在α-β坐标系下的电压方程:

\frac{di_{\alpha }}{dt}=-\frac{R}{L}i_{\alpha }+\frac{1}{L}(u_{\alpha }-e_{\alpha })

\frac{di_{\beta }}{dt}=-\frac{R}{L}i_{\beta }+\frac{1}{L}(u_{\beta }-e_{\beta })

        式中,uα、uβ分别为α-β坐标系下的α轴、β轴电压分量,iα、iβ为电流分量,eα、eβ为反电势,其表达式为

e_{\alpha }=-\psi _{f}\omega _{e}sin(\theta _{e})

e_{\beta }=\psi _{f}\omega _{e}cos(\theta _{e})

        式中,ψf为转子永磁体磁场产生的磁链幅值,ωe为转子电角速度,θe为转子电角度。

        根据反电势表达式可知,反电势eα、eβ包含转子位置信息。根据电压方程,利用SMO得到反电势的估计值,然后由反电势表达式进而可得到转子位置的估计值,这就是SMO进行无刷直流电机转子位置估算的整体思路。

        首先,根据电压方程设计滑模观测器:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Forster-C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值