一、为什么企业需要RAG?
1.1 传统知识库的三大痛点
- 信息孤岛:PDF、表格、网页等格式混杂,人工检索效率低(如财务报表中的嵌套表格难以解析)。
- 幻觉风险:大模型依赖自身训练数据,易产生错误结论(如客服系统误答产品参数)。
- 更新滞后:知识库每季度更新一次,无法匹配业务实时需求。
1.2 RAG技术的三大优势
- 动态增强:通过外部知识库实时补充大模型不足(如哈啰出行用多路召回提升召回率)。
- 精准检索:向量检索+关键词混合策略,解决长尾问题(如“2024年Q2华东区销售政策”等复杂查询)。
- 成本可控:仅需维护知识库,降低大模型微调成本(阿里云Qwen14b模型降噪方案)。
二、企业落地RAG的9大核心挑战与解决方案
2.1 数据预处理:从“垃圾进”到“黄金出”
- 挑战:PDF表格提取失败率高达30%(如合并单元格、图片转文字模糊)。
- 方案:
- 合合信息TextIn技术:将复杂文档转为Markdown格式,保留表格结构。
- 智能分段策略:按标题层级拆分文档(如H1标题对应章节,H3标题对应小节)。
2.2 混合检索:如何让机器像“图书管理员”一样思考?
- 挑战:单一向量检索易漏掉关键文档(如“2023年员工手册”被误判为无关)。
- 方案: