机器学习模型在径流预测中的研究模型构建【matlab】

径流预测是水资源管理和水文预报中的关键问题,特别是中长期径流预测涉及复杂的水文过程和大量的影响因素。传统的径流预测方法多依赖于物理模型和统计模型,这些方法在处理复杂的非线性特征和大规模数据时存在局限性。近年来,机器学习技术的快速发展为径流预测提供了新的思路和方法。然而,机器学习模型的有效性和可靠性在很大程度上取决于特征选择、模型参数的率定以及时频分析技术的应用。因此,本文聚焦于这三大核心问题,提出了一个系统的理论框架,并在克孜尔水库的历史数据上进行了仿真实验,以验证模型的有效性和改进空间。

机器学习径流预测模型的构建通常包括数据预处理、特征处理及选择、模型率定和预测等步骤。根据国内外研究,常用的机器学习算法包括支持向量机(SVM)和人工神经网络(ANN)。以下是模型率定的理论框架:

  • 数据预处理:包括数据清洗、缺失值处理和数据标准化。数据清洗主要去除异常值和噪声,缺失值处理可以采用均值填充、插值法等方法,数据标准化则将数据转换为相同的尺度,以便于模型的训练。

  • 其中,XXX 是原始数据,μ\muμ 和 σ\sigmaσ 分别是数据的均值和标准差,XnormX_{\text{norm}}Xnorm​ 是标准化后的数据。

  • 特征选择:选择与目标变量相关性强的特征,以提高模型的预测性能。常用的特征选择方法包括方差选择法、相关系数分析和递归特征消除(RFE)。

    相关系数分析计算特征与目标变量之间的相关性,公式如下

  • 基于上述方法论,从特征选择方法、机器学习模型和群智能搜索算法三个方面开展研究,实现了从方法论到模型构建的落地。

  • 具体包括:

  • 特征选择方法:应用了相关系数分析和递归特征消除(RFE),选择了对径流预测有显著影响的特征。

  • 机器学习模型:采用了SVM和ANN作为基准模型,并在此基础上进行了参数优化。

  • 群智能搜索算法:使用了粒子群优化(PSO)和遗传算法(GA)对模型超参数进行了优化。

在传统的特征选择方法中,特征选择和模型训练过程通常是分开的,这可能导致特征选择不符合实际模型的要求。为了克服这一问题,本文提出了基于群智能算法的嵌入式径流预测模型(EFS-SVMSI)。该模型将特征选择与预测器的参数率定融为一体,实现了特征向量和模型参数的自适应同步优选。

嵌入式特征选择的关键在于通过优化算法来同时选择特征和调整模型参数。例如,使用改进的遗传算法来优化特征子集和SVM的超参数。遗传算法的目标函数可以表示为:

为了提升群智能算法的优化能力,本文提出了一种“定特征,调超参”的定向调优搜索策略。这种策略首先确定重要特征,然后对选定特征上的模型参数进行优化。定向调优的关键在于避免传统算法中的局部最优问题。

例如,对于SVM模型,采用改进的粒子群优化算法(PSO)进行参数调优,改进后的目标函数为:

通过与传统特征选择方法进行对比,评价了嵌入式模型在预测性能和特征选择结果上的优势。实验结果表明,嵌入式模型能够有效提高预测精度,并且特征选择过程与模型训练过程的融合带来了更好的模型泛化性能。

从机器学习建模过程中数据分布特性对径流预测结果的影响出发,结合仿真实验结果,分析了后验实验框架和预测实验框架的性能差异。后验实验框架在模型训练后对数据进行分解和重构,而预测实验框架则在数据分解后进行模型训练和预测。实验结果表明,预测实验框架能够更好地捕捉数据的周期性和趋势性特征,从而提高预测精度。



numSamples = 200; % 样本数量
numFeatures = 10; % 特征数量

% 划分数据集为训练集和测试集
cv = cvpartition(numSamples, 'HoldOut', 0.3); % 70%训练集,30%测试集
XTrain = X(training(cv), :);
YTrain = Y(training(cv));
XTest = X(test(cv), :);
YTest = Y(test(cv));


fun = @(xT, yT, xV, yV) ...
    sum(predict(fitcsvm(xT, yT, 'KernelFunction', 'linear', 'Standardize', true), xV) ~= yV);


opts = statset('Display', 'iter');
[selectedFeatures, history] = sequentialfs(fun, XTrain, YTrain, 'cv', cvpartition(size(XTrain, 1), 'KFold', 5), 'options', opts);


disp('Selected features:');
disp(find(selectedFeatures));


XTrainSelected = XTrain(:, selectedFeatures);
XTestSelected = XTest(:, selectedFeatures);

svmModel = fitcsvm(XTrainSelected, YTrain, 'KernelFunction', 'linear', 'Standardize', true);

% 预测测试集
YPred = predict(svmModel, XTestSelected);

% 评估模型性能
accuracy = sum(YPred == YTest) / numel(YTest);
fprintf('Test Accuracy: %.2f%%\n', accuracy * 100);

% 可视化特征选择过程
figure;
plot(history.Crit, 'o-');
xlabel('Number of Features');
ylabel('Criterion Value');
title('Feature Selection Process');
grid on;

% 可视化模型预测结果
figure;
subplot(1, 2, 1);
scatter(1:numel(YTest), YTest, 'b', 'filled');
xlabel('Sample Index');
ylabel('True Label');
title('True Labels');
grid on;

subplot(1, 2, 2);
scatter(1:numel(YPred), YPred, 'r', 'filled');
xlabel('Sample Index');
ylabel('Predicted Label');
title('Predicted Labels');
grid on;

% 计算并显示混淆矩阵
confMat = confusionmat(YTest, YPred);
disp('Confusion Matrix:');
disp(confMat);


precision = confMat(1,1) / (confMat(1,1) + confMat(1,2));
recall = confMat(1,1) / (confMat(1,1) + confMat(2,1));
f1Score = 2 * (precision * recall) / (precision + recall);

fprintf('Precision: %.2f\n', precision);
fprintf('Recall: %.2f\n', recall);
fprintf('F1 Score: %.2f\n', f1Score);


[~, score] = predict(svmModel, XTrainSelected);
featureImportance = abs(score - mean(score));


  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值