-
电力负荷预测是基于电力负荷、经济发展状况和气象指标等历史数据,探索历史数据和未来负荷变化之间规律的方法。在电网调度、检修计划制定方面备受关注,对保证供电可靠性、提高社会经济效益具有重要意义。
-
超短期负荷预测目标
以超短期电力负荷预测为目标,分析确定显著影响负荷的特征数据,基于机器学习、深度学习及集成算法提高预测精度和效率。
二、历史数据问题及处理
-
历史数据问题
现有的超短期负荷预测选用的历史数据往往存在数据量虽大而数据特征维度少、无效数据多、数据间的特征关系不明确等问题,显著影响电力负荷预测的精度。 -
特征工程处理
- 数据填充及清洗:对采集到的原始特征数据进行填充及清洗,去除无效数据,提高数据质量。
- 基于 MDS 算法和 XGBoost 算法筛选与降维:分别基于 MDS(Multiple Dimensional Scalling)算法和 XGBoost 算法对特征数据集进行筛选与降维,得出对电力负荷具有显著影响的低维特征数据集。
- 相关性分析:分析各特征数据之间及其与负荷数据间的相关性,建立数据处理层模型,为负荷预测模型搭建提供高质量数据集。
三、双层 XGBoost 预测模型
-
XGBoost 算法优势
提出基于 XGBoost 算法的超短期电力负荷预测模型。XGBoost 算法可通过构建多个弱学习器逐层训练,避免对数据特征进行标准化处理,减小数据字段缺失的影响,不用考虑特征间是否相互依赖,且模型学习效果好。 -
麻雀优化算法优化
采用麻雀优化算法(Sparrow Search Algorithm,SSA)优化 XGBoost 预测模型的相关超参数并对模型进行训练,以得到精度最高、均方根误差最小的负荷预测模型,为电力系统规划提供依据。
四、多模型融合预测
-
融合多模型角度
从 Stacking 架构下融合多模型的角度考虑晴天工作日、节假日及阴雨天不同情况下的负荷预测模型。将 XGBoost 算法与多模型融合,充分考虑各种单模型预测方法的数据统计和训练原理差别。 -
多种模型植入
将多种机器学习及深度学习方法植入其中,包括 XGBoost、支持向量机算法(support vector machines,SVM)、随机森林算法(Random Forest,RF)、卷积神经网络(Convolutional Neural Networks,CNN)、循环门单元(Gate Recurrent Unit,GRU)。 -
选择元学习器
依据评价指标,选择 XGBoost 作为元学习器建立第二层预测模型。通过实际应用,可有效地定量分析输入数据信息的特征影响程度,随着基学习器的学习能力提升,各个单模型的预测误差相关程度也会大大降低,从而进一步提高模型的预测精度及效果。
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from skopt import BayesSearchCV
# 数据预处理函数
def preprocess_data(data):
# 数据填充及清洗实现
pass
# 基于 MDS 算法的特征降维
def mds_feature_reduction(data):
# MDS 算法降维实现
pass
# 基于 XGBoost 算法的特征选择
def xgboost_feature_selection(data, target):
# XGBoost 特征选择实现
pass
# XGBoost 预测模型
def xgboost_predictor(data, target):
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)
model = xgb.XGBRegressor()
search_space = {
'n_estimators': (100, 1000),
'learning_rate': (0.01, 0.3),
'max_depth': (3, 10),
'min_child_weight': (1, 10),
'subsample': (0.5, 1),
'colsample_bytree': (0.5, 1),
}
optimizer = BayesSearchCV(model, search_space, n_iter=50, cv=3, scoring='neg_mean_squared_error')
optimizer.fit(X_train, y_train)
best_model = optimizer.best_estimator_
predictions = best_model.predict(X_test)
return predictions, y_test
if __name__ == "__main__":
# 示例数据加载
data = pd.read_csv('load_data.csv')
processed_data = preprocess_data(data)
reduced_data_mds = mds_feature_reduction(processed_data)
selected_features_xgboost = xgboost_feature_selection(processed_data, data['load'])
predictions, true_values = xgboost_predictor(selected_features_xgboost, data['load'])