改进RRT路径规划算法毕业论文【附代码+数据】

✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。


  1. 狭窄通道环境特点及对路径规划的影响
    • 狭窄通道环境具有空间受限、障碍物分布复杂等特点。在这样的环境中,机器人的运动空间受到限制,需要更加精确的路径规划才能确保安全通过。传统的路径规划算法在面对狭窄通道时往往会遇到困难,因为狭窄通道可能会导致搜索空间变小,使得算法容易陷入局部最优解,从而降低路径规划的成功率。而且狭窄通道内的障碍物可能会阻挡机器人的直接通行,需要算法能够智能地找到绕过障碍物并通过狭窄通道的最佳路径。
  2. 传统 RRT 算法在狭窄通道环境中的局限性
    • 传统 RRT 算法是一种基于随机采样的路径规划算法,它通过在空间中随机生成采样点来扩展树,逐步探索到目标点。然而,在狭窄通道环境中,随机采样点可能很难准确地落在狭窄通道内,导致随机树在扩展过程中难以进入通道,从而降低了找到通过狭窄通道路径的成功率。此外,传统 RRT 算法在扩展树时没有针对性地对狭窄通道进行处理,可能会在通道外进行大量不必要的搜索,浪费计算资源,使得规划速率变慢。而且生成的初始路径可能存在较多的转折点,导致路径不够平滑,不符合机器人实际运动的要求,降低了路径的质量。

(二)改进 RRT 算法的关键策略

  1. 引导随机树辨识狭窄通道入口
    • 为了让算法能够更好地应对狭窄通道,首先要使随机树能够准确地找到狭窄通道的入口。通过对环境进行预先分析或采用特定的传感器信息,识别出可能存在狭窄通道的区域。然后在随机树扩展过程中,设置一定的偏向策略,使得采样点更有可能生成在靠近狭窄通道入口的位置。例如,可以根据环境地图中通道入口的大致位置,调整随机采样点的生成概率分布,增加在通道入口附近采样的可能性。这样可以引导随机树更快地朝着狭窄通道入口方向扩展,提高进入通道的效率,为后续在通道内的路径规划奠定基础。
  2. 偏向采样点策略优化随机点选取
    • 在随机树采样过程中,引入偏向采样点策略。除了考虑狭窄通道入口的因素外,还可以根据机器人当前的位置和目标位置,以及环境中的障碍物分布情况,动态地调整采样点的选取。比如,当机器人距离目标点较远且周围障碍物较少时,可以适当增加采样点的随机性,以更广泛地探索空间;而当机器人靠近狭窄通道或障碍物较多的区域时,减少采样点的随机性,使其更偏向于朝着目标点或可能的通道方向采样。这样可以在保证算法探索能力的同时,提高在关键区域的采样效率,减少不必要的搜索,加快路径规划的速度。
  3. 狭窄通道采样策略提升内部采样效率
    • 一旦随机树进入狭窄通道内部,进一步引入狭窄通道采样策略。针对狭窄通道的特殊形状和空间限制,设计专门的采样方法。例如,可以在通道内按照一定的规则分布采样点,如等间距采样或根据通道的曲率和宽度进行自适应采样。同时,结合通道内的障碍物信息,避免在障碍物附近生成无效的采样点。通过这种方式,引导随机树更好地在通道内部进行扩展,增加找到通过狭窄通道最佳路径的可能性,提高路径规划的成功率。
  4. 贪婪算法优化初始路径
    • 传统 RRT 算法生成的初始路径往往存在较多的转折点,这不仅会影响机器人的运动效率,还可能在实际执行过程中导致机器人的运动不稳定。因此,引入贪婪算法对初始路径进行优化。贪婪算法的基本思想是在每一步选择局部最优的决策,以逐步改进路径。对于初始路径中的每个节点,检查其相邻节点,选择与目标点距离最近且不与障碍物碰撞的节点作为下一个节点,不断重复这个过程,直到到达目标点或无法进一步优化为止。通过这种方式,可以减少初始路径中的转折点,使路径更加平滑和直接,提高规划路径的质量,更符合机器人实际运动的要求。

(三)改进 RRT 算法的性能评估与实验验证

  1. 仿真实验设计与结果分析
    • 为了验证改进 RRT 算法的有效性,进行了一系列仿真实验。在仿真环境中构建了具有狭窄通道的复杂场景,模拟机器人在不同环境下的路径规划任务。将改进后的算法与传统 RRT 算法进行对比,从多个方面评估算法的性能。
    • 迭代时间方面,改进算法相较于传统 RRT 算法有了显著提升,提升幅度达到 86.4%。这是因为通过引导随机树辨识狭窄通道入口和优化采样点选取策略,减少了在无关区域的搜索时间,使得算法能够更快地找到目标路径。迭代次数也减少了 77.2%,表明改进算法在搜索过程中更加高效,能够更快地收敛到可行路径。路径长度缩短了 21.5%,这得益于贪婪算法对初始路径的优化,使得生成的路径更加简洁直接。路径规划成功率提高了 77.6%,充分说明改进算法在狭窄通道环境下能够更有效地找到可行路径,提高了机器人在复杂环境中的通过能力。
  2. 实机试验平台搭建与实验开展
    • 基于 ROS(机器人操作系统)环境,搭建自主式移动机器人试验平台。对机器人的硬件架构进行精心设计,选取合适的传感器,如激光雷达、摄像头等,用于感知环境信息。同时选择性能稳定的硬件设备,确保机器人能够准确地获取环境数据并进行高效的计算。在实际环境中搭建了两种真实的障碍环境,一种是包含狭窄通道和简单障碍物的场景,另一种是具有复杂狭窄通道和多种障碍物组合的场景。
    • 在这些真实环境中开展自主探索与路径规划的实机试验。机器人在环境中运行,通过传感器实时获取周围环境信息,然后运用改进的 RRT 算法进行路径规划。实验结果表明,机器人能够成功地在狭窄通道中找到合适的路径并安全通过,验证了该优化的 RRT 算法在实际应用中的有效性和可行性。机器人能够根据环境的变化实时调整路径规划,展示了算法的适应性和鲁棒性,为自主式移动机器人在复杂、未知环境中的应用提供了有力的支持。
import random
import math


environment_map = [[0, 0, 1, 0, 0],
                   [0, 1, 0, 1, 0],
                   [0, 0, 0, 0, 0],
                   [1, 0, 1, 0, 1],
                   [0, 0, 0, 0, 0]]

# 机器人起始位置和目标位置
start = (0, 0)
goal = (4, 4)

# 节点类
class Node:
    def __init__(self, x, y):
        self.x = x
        self.y = y
        self.parent = None

# 计算两个节点之间的距离
def distance(node1, node2):
    return math.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2)

# 检查节点是否在狭窄通道内(这里简单假设通道在中间一行)
def in_narrow_channel(node):
    return node.y == 2

# 传统RRT算法
def traditional_rrt():
    nodes = [Node(start[0], start[1])]
    while True:
        # 随机采样点
        random_point = (random.randint(0, 4), random.randint(0, 4))
        # 找到距离随机点最近的节点
        nearest_node = min(nodes, key=lambda node: distance(node, Node(random_point[0], random_point[1])))
        # 扩展新节点
        new_node = Node(nearest_node.x + int((random_point[0] - nearest_node.x) / max(1, distance(nearest_node, Node(random_point[0], random_point[1])))),
                        nearest_node.y + int((random_point[1] - nearest_node.y) / max(1, distance(nearest_node, Node(random_point[0], random_point[1])))))
        if environment_map[new_node.y][new_node.x] == 0:
            new_node.parent = nearest_node
            nodes.append(new_node)
            # 检查是否到达目标
            if distance(new_node, Node(goal[0], goal[1])) < 1:
                return nodes

# 改进的RRT算法
def improved_rrt():
    nodes = [Node(start[0], start[1])]
    while True:
        # 偏向采样点策略(这里简单假设靠近目标点和狭窄通道入口的概率增加)
        if random.random() < 0.5:
            random_point = goal
        else:
            if in_narrow_channel(Node(goal[0], goal[1])):
                random_point = (random.randint(1, 3), 2)
            else:
                random_point = (random.randint(0, 4), random.randint(0, 4))
        # 找到距离随机点最近的节点
        nearest_node = min(nodes, key=lambda node: distance(node, Node(random_point[0], random_point[1])))
        # 扩展新节点
        new_node = Node(nearest_node.x + int((random_point[0] - nearest_node.x) / max(1, distance(nearest_node, Node(random_point[0], random_point[1])))),
                        nearest_node.y + int((random_point[1] - nearest_node.y) / max(1, distance(nearest_node, Node(random_point[0], random_point[1]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值