✅博主简介:本人擅长数据处理、建模仿真、论文写作与指导,科研项目与课题交流。项目合作可私信或扫描文章底部二维码。
(1)多电平逆变器及 SHEPWM 技术基础
多电平逆变器概述
随着功率器件的发展,多电平逆变器因其众多优点,如高压大容量、低谐波含量、低电磁干扰、低单管应力、高功率因数等,被广泛应用于中高压大功率的电机调速和电力系统等领域。详细介绍了经典多电平逆变器的拓扑结构,包括不同类型的拓扑结构及其特点,以及它们在实际应用中的优势和适用场景。同时,也阐述了多电平逆变器的调制方法,分析了各种调制方法的原理和优缺点,为后续对 SHEPWM 技术的研究奠定基础。
SHEPWM 技术数学模型建立
以级联 H 桥型七电平逆变器为控制对象,建立了 1/4 周期对称的多电平逆变器 SHEPWM 技术数学模型。在建立模型过程中,详细说明了如何根据逆变器的工作原理和 SHEPWM 技术的要求,推导出相应的数学表达式。该模型准确地描述了逆变器输出电压与开关角度等参数之间的关系,为后续求解 SHEPWM 非线性超越方程组提供了依据。
(2)SHEPWM 非线性超越方程组求解方法比较与改进
传统数值算法与智能算法求解效果对比
对 SHEPWM 非线性超越方程组的求解问题,比较了传统数值算法中的牛顿迭代法、同伦算法以及智能算法中的人工蜂群算法的求解效果。牛顿迭代法对初始值依赖性很强,若初始值选择不当,可能导致算法不收敛或收敛到错误的解。同伦算法的精度不够,虽然经同伦算法修正的牛顿迭代法具有较强的收敛能力,求解精度也有所提高,但仍达不到人工蜂群算法的求解效率。人工蜂群算法原理简单,具有较强的探索能力,在求解 SHEPWM 方程组时表现出较高的效率。
遗传学习人工蜂群算法改进
将遗传学习算法引入到人工蜂群算法的侦察蜂阶段。在侦察蜂阶段,被抛弃的蜜源将由遗传学习算法构建的新蜜源代替。详细阐述了遗传学习算法与人工蜂群算法的融合方式,包括如何利用遗传算法的交叉、变异等操作来生成新的蜜源位置,以及如何在人工蜂群算法的框架下合理运用遗传学习的结果。通过这种改进,使得算法在保持人工蜂群算法优点的基础上,进一步提高了计算速度和精度,更有效地解决 SHEPWM 方程组问题。
(3)遗传学习人工蜂群算法在级联 H 桥型逆变器中的应用与分析
不同算法在逆变器中的仿真分析与谐波消除效果比较
将同伦算法优化牛顿迭代法、人工蜂群算法和遗传学习人工蜂群算法分别应用于级联 H 桥型七电平逆变器进行仿真分析,并比较谐波消除效果。通过在 MATLAB/Simulink 仿真平台上搭建模型,模拟逆变器在不同算法控制下的运行情况,分析输出电压的谐波含量。结果表明,遗传学习人工蜂群算法在保持人工蜂群算法原理简单、探索能力强的基础上,能够更有效地消除特定的谐波分量,提高了逆变器的输出质量。与其他算法相比,具有明显的优势,既保证了计算速度,又提高了谐波消除的精度。
1/2 周期对称 SHEPWM 技术研究与仿真
针对多电平逆变器相电压输出波形 1/2 周期对称的 SHEPWM 技术,分别采用 1/2 周期奇对称和 1/2 周期镜对称两种方案,构建 SHEPWM 技术数学模型。利用遗传学习人工蜂群算法分别求解对应的 SHEPWM 方程组,并深入分析解的特性。在 MATLAB/Simulink 仿真平台上搭建模型,详细研究两种波形对称方案下的 SHEPWM 问题。通过仿真结果可以看出,在 1/2 周期奇对称和 1/2 周期镜对称两种波形对称方案下,特定谐波的消除效果较好,符合理论预期。这为实际应用中根据不同的需求灵活选择波形对称方案提供了依据,能够在满足谐波要求的前提下,优化逆变器的性能和效率。
% 定义目标函数(这里假设为求解SHEPWM方程组的误差最小化)
function f = objective_function(x)
% x为开关角度等参数向量
% 根据SHEPWM数学模型计算目标函数值(误差)
f = calculate_error(x);
end
% 人工蜂群算法参数设置
num_bees = 50; % 蜜蜂总数
limit = 100; % 蜜源放弃阈值
max_iterations = 200; % 最大迭代次数
% 初始化蜜源位置
bee_positions = rand(num_bees, n) * (upper_bound - lower_bound) + lower_bound; % n为参数个数
fitness_values = zeros(num_bees, 1);
% 计算初始蜜源的适应度值
for i = 1:num_bees
fitness_values(i) = objective_function(bee_positions(i, :));
end
iter = 0;
while iter < max_iterations
% 雇佣蜂阶段
for i = 1:num_bees
new_position = bee_positions(i, :) + randn(n) * (bee_positions(i, :) - bee_positions(randi(num_bees), :)));
new_position = min(max(new_position, lower_bound), upper_bound);
new_fitness = objective_function(new_position);
if new_fitness < fitness_values(i)
bee_positions(i, :) = new_position;
fitness_values(i) = new_fitness;
end
end
% 观察蜂阶段
probabilities = fitness_values / sum(fitness_values);
for i = 1:num_bees
selected_bee = RouletteWheelSelection(probabilities);
new_position = bee_positions(selected_bee, :) + randn(n) * (bee_positions(selected_bee, :) - bee_positions(randi(num_bees), :));
new_position = min(max(new_position, lower_bound), upper_bound);
new_fitness = objective_function(new_position);
if new_fitness < fitness_values(selected_bee)
bee_positions(selected_bee, :) = new_position;
fitness_values(selected_bee) = new_fitness;
end
end
% 侦察蜂阶段
for i = 1:num_bees
if fitness_values(i) > limit
bee_positions(i, :) = rand(n) * (upper_bound - lower_bound) + lower_bound;
fitness_values(i) = objective_function(bee_positions(i, :));
end
end
iter = iter + 1;
end
% 输出最优解
[best_fitness, best_index] = min(fitness_values);
disp(['最优解: ', num2str(bee_positions(best_index, :))]);
disp(['最优适应度值(最小误差): ', num2str(best_fitness)]);
% 轮盘赌选择函数
function selected_index = RouletteWheelSelection(probabilities)
r = rand;
c = cumsum(probabilities);
selected_index = find(r <= c, 1);
end