k-means聚类算法改进及应用毕业论文【附代码+数据】

博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)启发式k-means算法的问题分析 传统的启发式k-means算法在初始簇中心的选择上完全随机,这可能导致算法陷入局部最优解。此外,算法需要人工设定参数k,即簇的数量,这对于非专家用户来说是一个挑战。同时,算法对于离群点非常敏感,容易受到异常值的影响,从而影响聚类结果的准确性。针对这些问题,本研究分析了启发式k-means算法的局限性,并提出了相应的改进措施。

(2)CHk-means算法的提出 CHk-means算法首先采用仔细播种方法来选择初始簇中心,以减少随机初始化带来的问题。这种方法通过评估数据点之间的距离,选择距离较远的点作为初始簇中心,从而提高了初始种群的质量。其次,算法采用肘方法来确定最优的k值。肘方法通过评估不同k值下的聚类误差,选择误差下降速率骤减的点作为最优k值。最后,CHk-means算法引入局部异常因子(LOF)算法来识别离群点,从而提高了聚类的鲁棒性。

(3)CHk-means算法的应用与评估 为了验证CHk-means算法的有效性,本研究在多个数据集上进行了实验。首先,对数据集进行了预处理,包括归一化和去除缺失值等步骤。然后,将CHk-means算法应用于这些数据集,并与其他聚类算法进行了比较。实验结果表明,CHk-means算法在降低聚类结果的误差平方和(SSE)和提高聚类的轮廓系数(SC)方面表现优异,聚类质量得到了显著改善。此外,本研究还将CHk-means算法应用于大规模的道路交通事故数据集,通过聚类结果成功识别出多个交通事故易发区域,并给出了各区域中心的经纬度坐标,为事故检测和应急处理提供了数据支持。与其他算法相比,CHk-means算法在误差平方和、轮廓系数、运行时间和聚类质量等指标上均展现出优越的性能。


% 初始化CHk-means算法的参数
k = 3; % 聚类数目
maxIterations = 100; % 最大迭代次数

% 运行CHk-means算法
[idx, centroids] = CHkmeans(dataset, k, maxIterations);

% 可视化聚类结果
figure;
hold on;
colors = lines(k);
for i = 1:k
    clusterPoints = dataset(idx == i, :);
    scatter(clusterPoints(:, 1), clusterPoints(:, 2), 10, colors(i, :), 'filled');
end
scatter(centroids(:, 1), centroids(:, 2), 100, 'k', 'filled');
title('CHk-means Clustering Results');
xlabel('Feature 1');
ylabel('Feature 2');
hold off;

% 定义CHk-means函数
function [idx, centroids] = CHkmeans(dataset, k, maxIterations)
    % 初始化簇中心
    centroids = initializeCentroids(dataset, k);
    
    % 初始化簇标签
    idx = assignDataPointsToClusters(dataset, centroids);
    
    % 迭代更新簇中心和簇标签
    for iter = 1:maxIterations
        oldCentroids = centroids;
        [idx, centroids] = assignDataPointsToClusters(dataset, centroids);
        if isequal(oldCentroids, centroids)
            break;
        end
    end
end

% 定义初始化簇中心的函数
function centroids = initializeCentroids(dataset, k)
    % 使用仔细播种方法初始化簇中心
    % ...
end

% 定义分配数据点到簇的函数
function [idx, centroids] = assignDataPointsToClusters(dataset, centroids)
    % 分配数据点到最近的簇中心
    % ...
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值