移动边缘计算任务分解与资源分配策略毕业论文【附代码+数据】

博主简介:擅长数据处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)移动边缘计算(Mobile Edge Computing, MEC)在智能驾驶等应用领域中扮演着至关重要的角色,它通过在网络中靠近用户的边缘节点上进行数据处理和存储,能够满足低时延、低能耗和高可靠性的需求。本文聚焦于MEC系统中的任务分解与资源分配问题,旨在提高多用户设备与多MEC服务器系统下的任务卸载效率。首先,本文综合考虑了任务粒度、内聚性以及子任务之间的关联程度等多个因素,形式化地描述了任务分解过程。为了解决这一复杂的优化问题,本文引入并改进了蚁群算法。

改进的蚁群算法主要针对以下几个方面进行了调整:初始信息素分布、状态转移规则以及挥发因子。具体来说,为了更好地引导蚂蚁找到最优解路径,本文重新设置了初始信息素分布,使其更加均匀地覆盖整个搜索空间。同时,状态转移规则也进行了修改,以增强蚂蚁探索新路径的能力,避免过早收敛到局部最优解。此外,动态调整挥发因子可以使得信息素更新机制更加灵活,从而进一步提升算法的搜索效率。实验仿真结果显示,在相同数量的任务下,改进后的蚁群算法显著降低了系统带宽占用率,仅为25%左右,而其他传统算法的系统带宽占用率则超过50%。随着任务数量的增加,该算法在任务开销总时延方面的表现也越来越好,相较于其他算法,可以节省至少3秒的任务执行时间。这表明改进的蚁群算法不仅提高了任务分解的精度,还有效地减少了系统的通信成本和延迟。

(2)除了任务分解之外,合理的资源分配策略也是确保MEC系统高效运行的关键。为此,本文提出了一种基于多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)的改进Res MADDPG(Residual Multi-Agent Deep Deterministic Policy Gradient)算法,并利用该算法设计了高效的资源分配策略。Res MADDPG算法是在MADDPG的基础上引入了残差网络结构,以加速模型的训练过程和提高算法的收敛速度。

在资源分配过程中,移动设备和边缘服务器被视为智能体,它们通过与周围环境不断交互来学习如何优化资源分配。每个智能体根据当前的状态(如可用资源、任务队列等)采取行动(如分配计算资源、选择卸载目标等),并通过奖励函数获得反馈,逐步优化自身的策略。这种基于MARL的方法能够适应异构的MEC系统网络架构,实现动态且自适应的资源分配。

为了验证Res MADDPG算法的有效性,本文进行了大量的实验对比。实验结果表明,在处理100个任务时,Res MADDPG算法将任务执行总时延缩短至3.2秒,比其他基线算法减少了近一倍的时延开销。当处理大规模任务时,Res MADDPG算法的优势更为明显,其任务执行总时延比其他基线算法减少了4秒以上,能耗开销减少了150焦耳以上。这些结果充分证明了Res MADDPG算法在降低系统开销成本方面的优越性能。

(3)本文的研究不仅提高了MEC系统中任务卸载的效率,也为相关领域的研究提供了新的思路和方法。通过结合任务分解和资源分配两方面的优化,本文提出的方案能够在保证低时延的同时,最大限度地减少能耗和通信成本,这对于智能制造、智能交通、智能医疗等需要实时计算和决策的应用场景具有重要意义。

具体而言,对于智能制造领域,MEC技术可以用于生产线上的实时监控和控制,通过快速响应生产过程中的异常情况,提高生产效率和产品质量。在智能交通领域,MEC可以帮助自动驾驶车辆实现实时的数据处理和决策,确保行车安全。而在智能医疗领域,MEC可以在紧急情况下提供快速的诊断支持,为患者争取宝贵的救治时间。

此外,本文提出的改进蚁群算法和Res MADDPG算法也可以应用于更广泛的场景中。例如,在云计算环境中,可以通过类似的方法对大规模计算任务进行有效的管理和调度;在物联网系统中,可以利用这些算法优化传感器数据的采集和处理,提高系统的整体性能。

% 基于改进蚁群算法的任务分解与基于Res MADDPG算法的资源分配策略

% 参数设置
numTasks = 100; % 任务数量
numServers = 10; % 服务器数量
pheromoneInit = 0.1; % 初始信息素浓度
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发式信息重要程度因子
rho = 0.1; % 挥发因子
maxIterations = 100; % 最大迭代次数
numAnts = 50; % 蚂蚁数量
Q = 1; % 信息素增量系数

% 生成随机任务和服务器
tasks = rand(numTasks, 2); % 任务大小和优先级
servers = rand(numServers, 2); % 服务器处理能力和带宽

% 初始化信息素矩阵
pheromoneMatrix = pheromoneInit * ones(numTasks, numServers);

% 改进的蚁群算法任务分解
for iter = 1:maxIterations
    % 清空蚂蚁路径
    antPaths = cell(numAnts, 1);
    
    % 每只蚂蚁构造一条路径
    for ant = 1:numAnts
        currentTask = randi([1, numTasks]);
        path = [];
        
        while ~isempty(currentTask)
            % 计算状态转移概率
            probabilities = (pheromoneMatrix(currentTask, :) .^ alpha) .* ...
                ((1 ./ (sum(abs(tasks(currentTask, :) - servers), 2))) .^ beta);
            probabilities = probabilities / sum(probabilities);
            
            % 选择下一个服务器
            nextServer = randsample(1:numServers, 1, true, probabilities);
            path = [path, nextServer];
            
            % 更新信息素
            deltaPheromone = Q / (abs(tasks(currentTask, 1) - servers(nextServer, 1)) + 1e-6);
            pheromoneMatrix(currentTask, nextServer) = (1 - rho) * pheromoneMatrix(currentTask, nextServer) + deltaPheromone;
            
            % 移除已分配的任务
            tasks(currentTask, :) = Inf;
            [~, currentTask] = min(tasks(:, 1));
        end
        
        antPaths{ant} = path;
    end
    
    % 更新全局最优路径
    bestPath = antPaths{1};
    for i = 2:numAnts
        if length(bestPath) > length(antPaths{i})
            bestPath = antPaths{i};
        end
    end
    
    % 显示当前迭代的最佳路径
    disp(['Iteration ', num2str(iter), ': Best Path Length = ', num2str(length(bestPath))]);
end

% Res MADDPG算法资源分配策略
function [actions, rewards] = resMADDPG(servers, tasks, maxEpisodes)
    % 定义网络参数
    numAgents = numServers;
    stateDim = 2; % 服务器状态维度
    actionDim = 2; % 动作维度(分配计算资源和带宽)
    hiddenLayerSize = 64;
    learningRate = 1e-4;
    batchSize = 64;
    memoryCapacity = 10000;
    gamma = 0.99;
    tau = 0.005; % 软更新参数
    
    % 创建经验回放缓冲区
    memory = rlReplayMemory(memoryCapacity, 'Observation', {stateDim}, 'Action', {actionDim}, 'Reward', {}, 'NextObservation', {stateDim}, 'Done', {});
    
    % 创建神经网络
    actorNet = createActorNetwork(stateDim, actionDim, hiddenLayerSize);
    criticNet = createCriticNetwork(stateDim, actionDim, hiddenLayerSize);
    targetActorNet = createActorNetwork(stateDim, actionDim, hiddenLayerSize);
    targetCriticNet = createCriticNetwork(stateDim, actionDim, hiddenLayerSize);
    
    % 设置优化器
    actorOptimizer = adamupdate(actorNet, learningRate);
    criticOptimizer = adamupdate(criticNet, learningRate);
    
    % 初始化动作和奖励
    actions = zeros(maxEpisodes, numAgents, actionDim);
    rewards = zeros(maxEpisodes, numAgents);
    
    % 开始训练
    for episode = 1:maxEpisodes
        % 重置环境
        states = servers;
        done = false;
        totalReward = 0;
        
        while ~done
            % 获取动作
            [actions(episode, :, :), _] = getActions(actorNet, states);
            
            % 执行动作并获取奖励
            [nextStates, rewards(episode, :), done] = stepEnvironment(states, actions(episode, :, :), tasks);
            totalReward = totalReward + sum(rewards(episode, :));
            
            % 存储经验
            for i = 1:numAgents
                experience = struct('Observation', states(i, :), 'Action', actions(episode, i, :), 'Reward', rewards(episode, i), 'NextObservation', nextStates(i, :), 'Done', done);
                add(memory, experience);
            end
            
            % 更新状态
            states = nextStates;
        end
        
        % 训练网络
        if memory.NumEntries >= batchSize
            minibatch = sample(memory, batchSize);
            trainNetworks(minibatch, actorNet, criticNet, targetActorNet, targetCriticNet, actorOptimizer, criticOptimizer, gamma, tau);
        end
        
        % 显示每轮训练的结果
        disp(['Episode ', num2str(episode), ': Total Reward = ', num2str(totalReward)]);
    end
end

% 辅助函数定义
function net = createActorNetwork(stateDim, actionDim, hiddenLayerSize)
    layers = [
        featureInputLayer(stateDim, 'Name', 'observation')
        fullyConnectedLayer(hiddenLayerSize, 'Name', 'fc1')
        reluLayer('Name', 'relu1')
        fullyConnectedLayer(actionDim, 'Name', 'fc2')
        tanhLayer('Name', 'tanh1')];
    net = dlnetwork(layers);
end

function net = createCriticNetwork(stateDim, actionDim, hiddenLayerSize)
    inputState = featureInputLayer(stateDim, 'Name', 'observation');
    inputAction = featureInputLayer(actionDim, 'Name', 'action');
    fc1 = fullyConnectedLayer(hiddenLayerSize, 'Name', 'fc1');
    relu1 = reluLayer('Name', 'relu1');
    fc2 = fullyConnectedLayer(1, 'Name', 'fc2');
    layers = [inputState, inputAction, concatenationLayer(1, 2, 'Name', 'concat'), fc1, relu1, fc2];
    net = dlnetwork(layers);
end

function [actions, logProbs] = getActions(net, states)
    observations = dlarray(states, 'SSC');
    [actions, logProbs] = forward(net, observations);
    actions = extractdata(actions);
    logProbs = extractdata(logProbs);
end

function [nextStates, rewards, done] = stepEnvironment(states, actions, tasks)
    % 模拟环境步骤
    nextStates = states + actions * 0.1; % 简单模拟状态变化
    rewards = -sum(abs(tasks - nextStates), 2); % 简单奖励函数
    done = all(sum(abs(tasks - nextStates), 2) < 1e-3, 1); % 简单终止条件
end

function trainNetworks(minibatch, actorNet, criticNet, targetActorNet, targetCriticNet, actorOptimizer, criticOptimizer, gamma, tau)
    % 提取小批量数据
    observations = cat(1, minibatch.Observation{:});
    actions = cat(1, minibatch.Action{:});
    rewards = cat(1, minibatch.Reward{:});
    nextObservations = cat(1, minibatch.NextObservation{:});
    dones = cat(1, minibatch.Done{:});
    
    % 计算目标值
    nextActions = getActions(targetActorNet, nextObservations);
    nextValues = forward(targetCriticNet, nextObservations, nextActions);
    targets = rewards + (1 - dones) * gamma * nextValues;
    
    % 训练批评者网络
    criticLoss = meanSquaredError(forward(criticNet, observations, actions), targets);
    gradients = dlgradient(criticLoss, criticNet.Learnables);
    criticNet = updateNetwork(criticNet, gradients, criticOptimizer);
    
    % 训练演员网络
    actorLoss = -mean(forward(criticNet, observations, getActions(actorNet, observations)));
    gradients = dlgradient(actorLoss, actorNet.Learnables);
    actorNet = updateNetwork(actorNet, gradients, actorOptimizer);
    
    % 软更新目标网络
    targetActorNet = softUpdate(targetActorNet, actorNet, tau);
    targetCriticNet = softUpdate(targetCriticNet, criticNet, tau);
end

function net = updateNetwork(net, gradients, optimizer)
    [net, ~] = adamupdate(net, gradients, optimizer);
end

function net = softUpdate(targetNet, sourceNet, tau)
    for i = 1:numel(targetNet.Learnables)
        paramName = targetNet.Learnables{i}.Name;
        targetNet.Learnables{i}.Value = (1 - tau) * targetNet.Learnables{i}.Value + tau * sourceNet.Learnables{i}.Value;
    end
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值