✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 循环生成对抗网络用于遮挡人脸识别
针对遮挡人脸识别过程中,由于遮挡会导致原有图像信息丢失的问题,本文提出了一种基于改进生成对抗网络(GAN)的遮挡人脸识别方法。该方法的创新之处在于利用人脸预测和信息融合来引导人脸图像的修复与识别。首先,引入了一种新的编码器-解码器网络结构,将其与基于变分自动编码器的主干网络结合,以预测并融合遮挡人脸区域的语义信息。在生成器网络中,利用变分自动编码器(VAE)对输入人脸的遮挡区域进行合理预测,并利用编码器-解码器结构生成修复后的完整人脸图像。在这一过程中,生成器不仅需要重建丢失部分,还需保持人脸的全局一致性,以实现高质量的人脸修复。
其次,为进一步提升人脸识别的准确性,本文对经典的ResNet-50网络进行了改进。提出了一种将Regular Face和Softmax损失函数联合优化的策略,优化了识别网络的训练过程,使得模型在处理遮挡情况下的人脸图像时更具鲁棒性。这种联合损失能够在保持高辨识度的同时,减少识别过程中由于遮挡导致的特征信息丢失,提升整体模型的识别精度。实验结果表明,在遮挡率为10%的情况下,改进后的模型在识别率方面有显著提高,达到了97.78%。这验证了基于人脸预测和语义信息融合的循环生成对抗网络在修复和识别遮挡人脸中的有效性。
(2) 基于图像哈希与生成对抗网络的遮挡人脸识别方法
为了进一步解决遮挡导致的人脸特征信息变化而影响模型鲁棒性和识别准确性的问题,本文提出了一种基于图像哈希的生成对抗网络(GAN)算法。首先,利用图像哈希技术对输入图像进行特征转换,将图像转化为紧凑的哈希值,以提升对遮挡图像的判别能力。图像哈希的使用有效地减少了遮挡对图像的负面影响,使得网络能够更精确地提取非遮挡区域的有效信息。
其次,在生成对抗网络的设计中,本文采用了四个独立的判别器并引入位置注意力模块,对人脸图像的不同区域分别进行判别。每个判别器专注于人脸的特定部分,从而使得网络可以在遮挡区域和非遮挡区域之间进行有效的区分,增强了模型对遮挡影响的感知能力。此外,本文还提出了一种由对抗损失、重建损失和哈希损失组成的联合损失函数,以更好地训练生成器和判别器。对抗损失用于增强生成器的图像生成能力,重建损失用于保证生成图像的真实性和一致性,而哈希损失则用于保持修复图像的哈希特征与原始图像一致,从而确保修复结果的准确性和一致性。
最后,针对ResNet-50网络的识别部分进行了参数调整和模型改进,使得其在处理复杂的遮挡人脸数据时表现更加稳健。实验在CelebA-1K数据集上进行了验证,结果显示本文提出的算法在遮挡人脸的识别率上取得了97.93%的较高准确性,证明了该方法在提高网络鲁棒性和识别准确性方面的有效性。
(3) 人脸修复与识别系统的设计与实现
本文进一步设计并整合了一种多种技术相结合的人脸修复与识别系统,该系统集成了特征信息提取、图像处理、生成对抗网络以及人脸识别等多个模块,实现了对遮挡人脸的高效修复与精准识别。首先,系统通过改进生成对抗网络对输入的遮挡人脸图像进行修复,以保证人脸区域信息的完整性。然后,利用优化后的ResNet-50网络对修复后的人脸进行识别。整个系统的流程包括图像预处理、特征提取、图像修复和识别等多个步骤,每一步都在提升人脸识别的准确性和鲁棒性方面发挥了重要作用。
在人脸图像的处理过程中,系统首先对输入的图像进行预处理,包括灰度化、去噪和尺度变换等操作,以确保输入图像的质量。接下来,系统使用改进的生成对抗网络对遮挡区域进行修复,生成具有较高视觉质量的完整人脸图像。修复后的图像通过优化后的识别网络进行特征提取和分类,以完成最终的人脸识别任务。实验表明,该系统在处理遮挡人脸的复杂场景中表现优越,有效提高了遮挡人脸的修复效果和识别准确率。通过离线实现,系统展示了良好的运行效率和稳定性,证明了其在实际应用中的潜在价值和可行性。
MATLAB代码示例:生成对抗网络的主要部分
% 定义生成器网络
function generator = define_generator()
layers = [ ...
imageInputLayer([64 64 3], 'Normalization', 'none', 'Name', 'input')
convolution2dLayer(4, 64, 'Stride', 2, 'Padding', 'same', 'Name', 'conv1')
reluLayer('Name', 'relu1')
convolution2dLayer(4, 128, 'Stride', 2, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu2')
transposedConv2dLayer(4, 64, 'Stride', 2, 'Cropping', 'same', 'Name', 'deconv1')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu3')
transposedConv2dLayer(4, 3, 'Stride', 2, 'Cropping', 'same', 'Name', 'deconv2')
tanhLayer('Name', 'tanh')
];
generator = layerGraph(layers);
end
% 定义判别器网络
function discriminator = define_discriminator()
layers = [ ...
imageInputLayer([64 64 3], 'Normalization', 'none', 'Name', 'input')
convolution2dLayer(4, 64, 'Stride', 2, 'Padding', 'same', 'Name', 'conv1')
leakyReluLayer(0.2, 'Name', 'lrelu1')
convolution2dLayer(4, 128, 'Stride', 2, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn1')
leakyReluLayer(0.2, 'Name', 'lrelu2')
fullyConnectedLayer(1, 'Name', 'fc')
sigmoidLayer('Name', 'sigmoid')
];
discriminator = layerGraph(layers);
end
% 训练生成对抗网络的主函数
function train_gan()
% 加载数据集
data = imageDatastore('path_to_dataset', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 定义生成器和判别器
generator = define_generator();
discriminator = define_discriminator();
% 训练参数设置
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'InitialLearnRate', 1e-4, ...
'Verbose', true, ...
'Plots', 'training-progress');
% 开始训练
for epoch = 1:100
% 数据预处理及训练逻辑
end
end