✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)铁路集装箱货运运价数据的特征处理以及特征选择
在铁路集装箱货运运价的预测研究中,特征处理和特征选择是预测系统设计的基础。本文选取了2012至2020年间的1176255条原始数据,覆盖了铁路集装箱货运的广泛运价信息。根据《铁路货运运价规则》,初步筛选出9个原始特征,这些特征涵盖了多种可能影响运价的因素,例如货物类型、运输距离、运输时效等。为了满足机器学习模型对特征数据的要求,本文对特征进行了数值化转换,最终获得14个新的特征字段,这些字段进一步增强了数据的描述能力,为后续的模型训练提供了更为丰富的信息基础。
为了确保数据的质量,数据清洗过程尤为重要。本文通过对缺失值和异常值的处理,确保了数据集的完整性和准确性。随后,通过对整个数据集进行统计分析,揭示了2012至2020年间铁路集装箱货运运价的变化趋势和波动规律。这些统计结果为后续的特征选择提供了有力的支持。在特征选择阶段,本文采用了多种方法来对特征进行重要性排序,包括相关性分析、决策树模型和Lasso-RFE(递归特征消除法)。相关性分析用于识别与目标变量强相关的特征,决策树通过对特征分裂的分析来判定其重要性,而Lasso-RFE则通过逐步消除不重要特征来确定最优特征组合。结合三种方法的结果,综合分析后选定了一些对预测最有贡献的特征变量,这些变量随后被用于机器学习模型的预测研究。
特征处理和选择的最终目标是提高预测模型的准确性和稳健性。在铁路集装箱运价预测中,特征的准确描述和合理选择对模型的学习效果具有重要影响。本文通过上述处理,获得了一个相对简洁且信息量丰富的特征集,确保了模型的训练质量和预测效果。通过特征选择,本文不仅减少了冗余特征对模型的负面影响,还有效提升了模型的计算效率。
(2)集装箱货运运价预测模型的搭建
在特征处理和选择的基础上,本文建立了集装箱货运运价的预测模型。为了获得高质量的预测结果,本文选择了梯度提升决策树(GBDT)、随机森林(RF)和极端梯度提升树(XGBoost)三种主流的机器学习算法,构建铁路集装箱运价的预测系统。这些模型在处理非线性关系和高维特征数据方面具有良好的表现,特别适用于预测精度要求较高的运价预测任务。
首先,本文分别将所有特征和特征选择结果输入到三种预测模型中,采用默认参数配置,利用决定系数、平均绝对误差(MAE)和平均误差(MSE)三个指标对模型的预测效果进行比较。通过这一过程,本文初步分析了不同模型在预测任务中的表现,发现XGBoost模型在多个评价指标上表现优于GBDT和RF。其原因在于XGBoost通过集成学习增强了模型的泛化能力,同时对过拟合有更好的控制能力,因此在复杂的数据集上具有明显的优势。
为了进一步提升预测的效果,本文对模型的超参数进行了优化。使用网格搜索法对超参数进行调优,结合交叉验证,确保了参数的最优选择。通过对比优化前后的模型效果,发现经过超参数优化后的模型在预测精度和误差控制方面有显著提升。例如,XGBoost经过调优后,决定系数和平均误差均有明显提高,进一步说明了模型优化对预测性能的积极影响。最后,本文将优化后的XGBoost模型确定为最优模型,用于铁路集装箱货运运价的最终预测。
在模型的搭建过程中,本文重点关注了全局和局部模型的平衡。GBDT和RF在特定场景下表现优异,但XGBoost由于其对梯度和损失的精细处理,能够更好地应对运价数据中的复杂特征。通过对比和优化,本文最终选择了XGBoost作为铁路集装箱运价预测的核心模型,确保了模型在精度、鲁棒性和效率上的全面表现。
(3)铁路集装箱货运运价预测系统的设计与应用分析
在建立预测模型之后,本文进一步设计了一个铁路集装箱货运运价预测系统。系统的设计旨在实现预测模型的便捷应用,为用户提供一个简单易用的工具来预测铁路集装箱运价。为了实现这一目标,本文使用Python中的Tkinter工具包开发了系统的GUI界面,方便用户进行交互。系统的主要功能包括从数据库中随机抽取数据进行预测,以及用户自定义输入特征进行运价预测。通过这种方式,系统不仅能满足铁路运输部门对于运价的快速预测需求,还能为货主提供个性化的运价预估服务。
该系统主要包含以下几个模块:特征输入模块、模型预测模块、结果显示模块,以及历史数据分析模块。在特征输入模块中,用户可以选择自动从数据库中抽取历史数据,也可以手动输入特征值。模型预测模块通过调用训练好的XGBoost模型,对输入特征进行运价预测,并将结果实时显示在界面上。同时,系统还提供历史数据分析功能,通过对历年运价数据的统计,帮助用户了解铁路集装箱运价的变化趋势,为运输规划提供数据支持。
本文对运价预测系统的应用场景进行了详细分析。首先,从铁路运输部门的角度来看,系统能够帮助其更好地制定运输计划和资源配置策略。准确的运价预测可以帮助运输部门优化列车调度,合理配置运输资源,从而提高运营效率。其次,对于货主而言,运价预测系统提供了货运成本的提前预估,这样货主可以在不同运输方式之间做出合理选择,以降低物流成本。最后,从政府的角度来看,运价预测系统为政策的制定和调整提供了数据支持。通过对铁路集装箱运价的预测,政府可以更好地了解市场动态,从而制定出更为合理的物流政策,推动物流行业的健康发展。
通过真实的铁路集装箱运价数据,本文建立的货运运价预测系统展现了其在多式联运集装箱运价预测中的潜力。系统的应用不仅提高了铁路集装箱运输的智能化水平,也为物流企业和相关政府部门提供了重要的决策支持。未来,随着数据的不断更新和算法的进一步改进,系统的预测精度和适用性将不断提升,为多式联运的高效发展提供更为有力的技术支撑。
% MATLAB代码实现基于XGBoost的铁路集装箱运价预测
% 初始化参数和设置
clear; clc;
numTrees = 100; % 决策树的数量
learningRate = 0.1; % 学习率
maxDepth = 6; % 树的最大深度
% 读取数据
filename = 'railway_freight_data.csv';
data = readtable(filename);
% 特征选择
features = data(:, 1:end-1); % 提取特征
labels = data(:, end); % 提取目标运价
% 数据标准化
[features, mu, sigma] = zscore(table2array(features));
labels = table2array(labels);
% 拆分数据集(训练集和测试集)
cv = cvpartition(size(features, 1), 'HoldOut', 0.3);
trainFeatures = features(training(cv), :);
trainLabels = labels(training(cv));
testFeatures = features(test(cv), :);
testLabels = labels(test(cv));
% 训练XGBoost模型
model = fitensemble(trainFeatures, trainLabels, 'LSBoost', numTrees, 'Tree', 'LearnRate', learningRate);
% 模型预测
predictedLabels = predict(model, testFeatures);
% 评估模型性能
mae = mean(abs(predictedLabels - testLabels));
mse = mean((predictedLabels - testLabels).^2);
rsquare = 1 - sum((predictedLabels - testLabels).^2) / sum((testLabels - mean(testLabels)).^2);
% 输出结果
fprintf('Mean Absolute Error: %.4f\n', mae);
fprintf('Mean Squared Error: %.4f\n', mse);
fprintf('R-Square: %.4f\n', rsquare);
% 可视化预测结果
figure;
plot(1:length(testLabels), testLabels, 'b-', 'LineWidth', 1.5);
hold on;
plot(1:length(testLabels), predictedLabels, 'r--', 'LineWidth', 1.5);
xlabel('Sample Index');
ylabel('Freight Rate');
legend('True Values', 'Predicted Values');
title('Freight Rate Prediction using XGBoost');
grid on;