分数槽集中绕组内置式永磁同步电机的槽极配合与损耗效率图研究【最新】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 分数槽集中绕组电机的电感与凸极比研究

在电动汽车应用中,分数槽集中绕组内置式永磁同步电机凭借其独特的绕组配置和内置的永磁体设计,展现了低铜耗、高容错能力和良好的弱磁扩速性能。然而,这种结构带来的电机谐波成分也会影响其效率和调速范围。为了解决这些问题,本文首先对不同槽极配合下的电机直轴电感和凸极比进行了研究。基于绕组系数的分布,结合绕组函数法和派克变换,建立了不饱和状态下电机直交轴电感的表达式,定义了直交轴气隙电感系数和槽漏感系数。通过这些系数可以清晰地描述不同槽极配合对直交轴电感和凸极比的影响。研究发现,负载对电机的直轴和交轴电感有显著影响,这进而影响了电机的输出转矩特性。具体而言,随着负载的增加,电感会发生动态变化,从而导致凸极比的改变,这对电机的动态性能和输出能力有重要影响。

(2) 逆变器限制与弱磁能力分析

对于分数槽集中绕组内置式电机来说,其弱磁能力是电动汽车高效运行的关键因素之一。本文深入研究了逆变器对电机输出能力的限制,尤其是考虑到电压谐波对电机性能的影响。为了定量分析逆变器输出电压的谐波特性,本文采用了电压畸变系数这一指标,并基于此建立了考虑电压谐波的永磁同步电机弱磁数学模型。在此基础上,应用冻结磁导率法对定子饱和和转子磁阻的影响进行了详细分析。研究表明,永磁体及其隔磁磁桥的拓扑设计在抑制电压谐波和增强电机弱磁能力方面起着至关重要的作用。特别地,本文提出了一种不均匀转子气隙的设计,通过优化转子的几何形状,可以有效提升电机的弱磁性能,使其在高转速区间保持稳定的输出。该方法通过改变转子气隙的分布,使得磁通密度分布更加均匀,从而减小了电机的转矩波动,提高了整体性能。

(3) 电机损耗、效率与振动性能的分析

分数槽集中绕组内置式永磁同步电机的性能不仅体现在其输出能力上,损耗、效率、振动与噪声等方面也极大地影响了其在电动汽车中的应用效果。本文对不同槽极配合电机在各种负载条件下的损耗进行了全面分析,包括铁芯损耗、永磁体涡流损耗以及绕组交流损耗。研究表明,电流的大小及其功率角对不同类型损耗的影响显著。铁芯损耗主要受电流频率变化的影响,而永磁体涡流损耗则受电流波形及磁场变化的影响。在全工况条件下,各槽极配合电机的电流和转矩分布也各有差异。本文通过实验和仿真比较了不同槽极配合电机的效率分布情况,结果表明,不同槽极组合在不同负载下的效率差异较大,合理的槽极配合可以显著提高电机在实际运行中的效率。此外,还研究了不同槽极配合电机的振动与抗退磁性能,结果显示,槽极组合对电机的振动频谱有着重要影响,合理的槽极设计可以有效降低电机的振动和噪声水平,从而提升电机的运行舒适性。

(4) 12槽8极“▽”型电机的优化设计与测试

在对电机性能的系统分析基础上,本文对12槽8极“▽”型内置式永磁同步电机进行了优化设计,并成功制造了一台峰值功率为112 kW的样机。优化设计过程中,采用了多目标优化方法来确定电机的电磁方案。为了降低电机的转矩波动,提出了一种转子边缘挖孔和“一”型永磁体上端挖孔的结构设计,这种设计不仅可以减少转矩脉动,还有效校验了转子的机械强度,确保电机在高转速运行时的安全性。最终确定的12槽8极电机的设计方案可以在12000 r/min的最高转速下提供稳定的功率输出,试验结果验证了设计的合理性和电机的高效性。在实验中,优化后的电机展示了较低的转矩波动和较高的效率,证明了分数槽集中绕组结构在电动汽车应用中的巨大潜力。

 

import numpy as np
import matplotlib.pyplot as plt

# 定义电机参数
class PMSMMotor:
    def __init__(self, slots, poles, rotor_gap, winding_factor):
        self.slots = slots  # 槽数
        self.poles = poles  # 极数
        self.rotor_gap = rotor_gap  # 转子气隙
        self.winding_factor = winding_factor  # 绕组系数

    def magnetic_field_analysis(self, current_density):
        # 磁场分析
        B_peak = current_density * self.winding_factor / self.rotor_gap
        return B_peak

    def torque_calculation(self, B_peak, rotor_radius, length):
        # 计算转矩
        torque = 1.5 * B_peak * rotor_radius * length
        return torque

# 初始化电机参数
slots = 12
poles = 8
rotor_gap = 0.005  # 气隙大小 (单位:m)
winding_factor = 0.85  # 绕组系数

# 创建电机实例
pmsm_motor = PMSMMotor(slots, poles, rotor_gap, winding_factor)

# 定义电流密度和其他参数
current_density = 3.0  # 电流密度 (单位:A/mm^2)
rotor_radius = 0.1  # 转子半径 (单位:m)
length = 0.2  # 电机长度 (单位:m)

# 获取磁场分析结果
B_peak = pmsm_motor.magnetic_field_analysis(current_density)

# 计算转矩
torque = pmsm_motor.torque_calculation(B_peak, rotor_radius, length)

print(f"磁场峰值: {B_peak:.3f} T")
print(f"电机转矩: {torque:.3f} Nm")

# 绘制磁场与电流关系曲线
current_densities = np.linspace(0, 5, 100)
B_peaks = [pmsm_motor.magnetic_field_analysis(cd) for cd in current_densities]

plt.figure(figsize=(10, 6))
plt.plot(current_densities, B_peaks, label='磁场峰值')
plt.xlabel('电流密度 (A/mm^2)')
plt.ylabel('磁场峰值 (T)')
plt.title('电流密度与磁场峰值的关系')
plt.legend()
plt.grid()
plt.show()

# 转矩波动优化分析
class TorqueOptimizer:
    def __init__(self, motor):
        self.motor = motor

    def optimize_torque_ripple(self, notches):
        # 通过转子边缘挖孔来优化转矩波动
        optimized_torque = self.motor.torque_calculation(B_peak, rotor_radius, length) * (1 - 0.1 * notches)
        return optimized_torque

# 创建转矩优化实例
torque_optimizer = TorqueOptimizer(pmsm_motor)

# 优化转矩波动
notches = 2  # 转子边缘的挖孔数量
optimized_torque = torque_optimizer.optimize_torque_ripple(notches)

print(f"优化后的电机转矩: {optimized_torque:.3f} Nm")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值