✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)优化设计方法的选择与工具实现
在钢框架结构的优化设计研究中,选择了神经网络算法作为优化设计的核心工具。神经网络算法是一种模仿人类大脑处理信息方式的人工智能技术,它通过构建多个处理单元之间的复杂连接模式来学习和解决问题。本研究中,特别关注了前馈型人工神经网络(Feedforward Neural Network),其结构简单且应用广泛。该类型神经网络由输入层、隐藏层以及输出层组成,每一层包含若干个神经元,这些神经元通过权重连接在一起。神经网络的学习过程主要依赖于反向传播算法(Backpropagation Algorithm),它允许网络根据预测结果与实际结果之间的误差调整连接权重,从而不断改进模型的准确性。
为了实现神经网络算法的应用,选用了MATLAB这一强大且灵活的数学计算软件环境。MATLAB内置了大量的函数库,可以方便地构建、训练和测试神经网络模型。此外,MATLAB还提供了图形界面工具箱,如Neural Network Toolbox,极大地简化了开发流程。同时,ANSYS被用作结构分析的主要平台,该软件以其强大的有限元分析能力著称,在结构力学领域有着广泛应用。ANSYS能够对复杂的钢结构进行精确的应力、应变分析,并提供丰富的后处理功能。通过将ANSYS生成的数据导入到MATLAB环境中,实现了两个软件间的有效协同工作,为后续的优化设计奠定了坚实基础。
(2)优化变量设定及约束条件
针对带有支撑的四层钢框架结构,选取了六个关键构件作为优化对象,包括柱、梁等重要承重部分。考虑到不同位置和荷载分布情况下的受力特点,每个构件都设置了特定的截面尺寸参数作为优化变量。例如,对于位于建筑物角部的柱子,因其承受着来自多方向的较大荷载,故需要特别考虑其截面宽度和高度;而对于水平方向上的主梁,则更注重其抗弯性能,因此重点优化其腹板厚度和翼缘宽度。此外,半刚性节点的转动刚度也被纳入了优化变量范畴,因为节点刚度直接影响整个框架结构的整体稳定性及内力分配。优化过程中设定了严格的应力约束条件,确保所有构件在最大荷载作用下不超过材料屈服强度,以保证结构的安全可靠。同时,挠度约束条件同样不可忽视,它限制了结构变形幅度,防止因过量位移导致的功能失效或舒适度下降问题。通过对上述变量和约束条件的综合考量,旨在找到既满足安全要求又能最大程度节省钢材用量的设计方案。
(3)优化设计方案实施与比较
基于不同的半刚性节点刚度配置,提出了两种优化设计方案:方案A采用较高刚度的节点设置,而方案B则倾向于较低刚度的节点选择。每种方案下,利用ANSYS进行了详细的结构分析,得到了各个优化设计算例对应的局部最优解。这些局部最优解包含了每个构件的最佳截面尺寸以及节点的最佳转动刚度值,它们反映了在当前节点刚度条件下所能达到的最佳经济性和安全性平衡点。随后,将这些局部最优解数据传输至MATLAB环境中,借助神经网络算法进一步寻找全局最优解。神经网络经过大量迭代训练后,最终确定了最理想的钢材使用量最小化组合。通过对比分析两种方案的结果发现,节点刚度配置对优化效果有着显著影响。一般来说,适当增加节点刚度可以在一定程度上减少钢材消耗,但过度提高刚度反而可能导致其他负面效应,比如增加施工难度或引发新的应力集中问题。因此,合理配置节点刚度是实现高效优化设计的关键因素之一。此外,从计算结果还可以看出,所提出的优化设计方法不仅有效地降低了钢材用量,而且在保持甚至提升结构整体性能方面表现出了良好效果,证明了该方法的有效性和实用性。
% 行 30: 初始化神经网络参数
hiddenLayerSize = 10; % 隐藏层数量
inputLayerSize = size(trainingData, 2); % 输入层大小
outputLayerSize = size(targetData, 2); % 输出层大小
% 行 40: 创建并配置神经网络
net = fitnet(hiddenLayerSize);
net.layers{1}.transferFcn = 'tansig'; % 设置激活函数
net.trainFcn = 'trainlm'; % 使用Levenberg-Marquardt算法训练
% 行 50: 准备训练数据集
% trainingData 和 targetData 分别代表输入特征矩阵和目标输出向量
% 这里假设已经从ANSYS获得了初步的优化结果作为训练样本
% 行 60: 开始训练神经网络
[net,tr] = train(net,trainingData,targetData);
% 行 70: 对训练后的网络进行评估
% 计算均方误差(MSE)以衡量模型性能
performance = perform(net, targetData, net(trainingData));
% 行 80: 使用训练好的网络预测新输入数据的结果
predictedOutput = net(newInputData);
% 行 90: 根据预测结果调整优化变量
% 更新结构构件尺寸和节点刚度等参数
% 行 100: 将更新后的参数重新输入到ANSYS中进行新一轮结构分析
% 并获取新的应力、应变和挠度等物理量
% 行 110: 检查是否满足优化终止条件
% 如达到预定的最大迭代次数或者性能指标不再明显改善时停止循环
% 行 120: 如果未满足终止条件,则返回第60步继续执行
% 行 130: 当满足终止条件后,输出最终优化结果
% 包括最优的结构构件尺寸、节点刚度配置及其对应的钢材用量
% 行 140: 绘制训练过程中的损失变化曲线
plotperform(tr);
% 行 150: 展示训练样本与预测值之间的对比图
plotregression(targetData, predictedOutput);
% 行 160: 分析神经网络各层权重分布情况
view(net);
% 行 170: 保存训练完成的神经网络模型
save('trainedNN.mat', 'net');
% 行 180: 加载之前保存的神经网络模型
load('trainedNN.mat');
% 行 190: 利用加载的模型进行快速预测
newPredictedOutput = net(additionalNewInputData);
% 行 200: 结合实际工程案例验证优化方法的有效性
% 收集现场测试数据并与理论计算结果进行比对
% 行 210: 根据反馈调整优化算法参数
% 调整学习率、隐藏层数量等超参数以期获得更好的泛化能力
% 行 220: 总结经验教训,提出改进建议
% 探讨未来可能的研究方向和技术突破点
% 行 233: 结束程序