暴雨强度公式与频率分布建模及Matlab实现【附代码】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)暴雨强度公式的背景与问题分析
随着全球气候变化的日益显著,城市化进程的加快,特别是在我国,一些中小城市面临的降雨情况和规律发生了显著变化,暴雨的频率和强度也逐年增大,给城市排水系统带来了巨大的挑战。暴雨造成的城市内涝问题,不仅对城市的基础设施造成损害,也对居民的生命财产安全构成威胁。因此,科学合理地设计城市雨水排水系统是防灾减灾的重要举措,而暴雨强度公式的正确制定是排水系统设计中的关键环节。

然而,目前用于我国大中城市的暴雨强度公式大多来源于20世纪七八十年代的研究,未能充分考虑现代城市暴雨的变化趋势,导致在某些地区的适用性较差。尤其是对于一些中小城市,由于缺乏合适的暴雨强度公式,无法准确评估和设计适合当地的排水系统。因此,本研究旨在针对佳县这一典型中小城市,提出一种更为适用且精确的暴雨强度公式,为当地的雨水排水系统设计提供科学依据。

(2)暴雨强度公式推求的技术路线与方法
本研究的核心技术路线是基于佳县21年的降雨数据,采用年最大值法进行数据采样,并通过理论频率分布模型对样本数据进行拟合分析。为此,首先收集了佳县21年来的降雨数据,确保数据样本的代表性和充分性。采样方法通过年最大值法,从每年的降雨数据中提取出最大值,以确保暴雨强度公式推导的准确性。

在数据拟合方面,本研究选择了三种理论频率分布模型:皮尔逊Ⅲ型理论频率曲线、指数分布曲线和耿贝尔分布曲线。通过MATLAB软件对数据进行处理,拟合这三种模型,评估其与实际降雨数据的契合度,并选取误差最小的模型作为暴雨强度公式推求的基础。经过分析,得出了佳县地区的T-t-i关系表,表示不同重现期下暴雨强度与降雨时间的关系。

进一步比较了两种常用的算法——麦夸尔特算法和遗传算法,在暴雨强度公式推求中的效果。麦夸尔特算法以其高效性和精确度在本研究中得到了更广泛的应用。遗传算法虽然具有较强的全局优化能力,但在暴雨强度公式推求中的效果略逊一筹。因此,最终选择了麦夸尔特算法作为暴雨强度公式的参数估计方法。

在推求过程中,特别考虑了原始降雨数据中的极端值(特大值)处理,确保暴雨强度公式能够准确反映出佳县地区在极端天气条件下的暴雨强度。这种处理方式不仅提升了公式的精度,也更好地适应了当地气候的特殊性。

(3)佳县暴雨强度公式推求与软件开发
在完成暴雨强度公式推求的理论研究之后,本研究基于MATLAB GUIDE平台,开发了一套完善的佳县暴雨强度公式推求软件系统。该软件系统不仅能够处理和分析佳县地区的降雨数据,还可以进行暴雨强度公式的自动推导,生成符合实际需要的暴雨强度公式和相关参数。

通过软件系统的计算与分析,本研究成功推导出了佳县暴雨强度公式。对于重现期为2至20年的暴雨强度公式,推导结果的绝对均方差为0.0207,相对均方差为2.6478%;对于重现期为2至100年的暴雨强度公式,推导结果的绝对均方差为0.0270,相对均方差为2.9029%。这些结果表明,所推导出的暴雨强度公式具有较高的精度,能够很好地反映佳县地区的降雨特性。

此外,通过对公式的误差分析,可以看出,在推求过程中,所使用的误差最小化模型和算法有效地消除了降雨数据中的噪声和极端值,确保了公式推求的稳定性和可靠性。这为佳县雨水排水系统的设计提供了科学依据,可以帮助工程师合理确定排水管网的设计口径,从而在暴雨发生时有效减少城市内涝的风险,保障居民的生活安全。

% 数据采样与预处理
rainfall_data = load('jiaxian_rainfall_data.txt');  % 加载佳县降雨数据
annual_max_values = max(rainfall_data, [], 2);  % 采用年最大值法提取样本数据

% 理论频率分布模型拟合
% 皮尔逊Ⅲ型分布拟合
pearson3_fit = fitdist(annual_max_values, 'GeneralizedPareto');  % 使用皮尔逊Ⅲ型分布进行拟合
% 指数分布拟合
exp_fit = fitdist(annual_max_values, 'Exponential');  % 使用指数分布进行拟合
% 耿贝尔分布拟合
gev_fit = fitdist(annual_max_values, 'GeneralizedExtremeValue');  % 使用耿贝尔分布进行拟合

% 比较拟合效果
pearson3_error = sum((annual_max_values - pearson3_fit.mu).^2);
exp_error = sum((annual_max_values - exp_fit.mu).^2);
gev_error = sum((annual_max_values - gev_fit.mu).^2);

% 选择误差最小的模型
[~, best_model_idx] = min([pearson3_error, exp_error, gev_error]);

% 选择最优模型并推导T-t-i关系
if best_model_idx == 1
    best_fit = pearson3_fit;
elseif best_model_idx == 2
    best_fit = exp_fit;
else
    best_fit = gev_fit;
end

% 麦夸尔特算法参数估计
% 初始化参数
initial_params = [1, 1, 1];  % 示例初始参数
options = optimset('MaxIter', 1000, 'TolFun', 1e-6);  % 设置优化选项
params_estimate = fminsearch(@(params) cost_function(params, annual_max_values), initial_params, options);

% 定义成本函数,用于优化
function cost = cost_function(params, data)
    model_values = pe3(params, data);  % 假设pe3为皮尔逊III型分布的拟合函数
    cost = sum((data - model_values).^2);  % 最小化误差平方和
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值