融合Transformer与CNN,实现各任务性能巅峰,可训练参数减少80%

论文er看过来,今天给各位推荐一个热门创新方向:CNN+Transformer。

众所周知,CNN通过多层卷积自动学习空间层级特征,能够有效提取图像局部特征。而Transformer通过自注意力机制全局建模,能够有效处理长距离依赖关系。

通过结合这两者的优势,我们不仅可以在保持运算效率的同时,提高模型在多种计算机视觉任务中的性能,还能实现较好的延迟和精度之间的权衡。

举个栗子:混合架构Lite-Mono。

该模型主要包含两个模块,CDC模块用于提取增强的多尺度局部特征,LGFI模块用于编码长距离的全局特征。实验表明,Lite-Mono在精度上优于Monodepth2,可训练参数减少了80%左右。

目前,这种策略通过多种方式融合两种模型的优点。主流的方法包括早期层融合、横向层融合、顺序融合、并行融合等。我这次整理了17种最新的CNN+Transformer结合方案,原文以及开源代码都附上了,方便各位学习。

论文原文以及开源代码需要的同学看文末

Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation

方法:本文提出了一种轻量级的自监督单目深度估计模型Lite-Mono&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值