局部自适应阈值分割原理
全局阈值分割算法简单,对于双峰直方图图像有很好的分割效果。但对于图像噪声和光照不均匀性十分敏感。图6-1是图像的OTSU分割效果。可见,由于边缘光照不均匀性,造成边缘分割失败。图像边缘光线较暗的地方被分割为0,中间较亮的地方分割成功。
如何规避光线不均匀带来的影响?一种典型的处理方法就是采用局部自适应阈值分割。根据像素邻域块的像素值分布来确定该像素位置上的二值化阈值。这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的。亮度较高的图像区域二值化阈值通常较高,而亮度较低的图像区域二值化阈值则会相应地变小。不同亮度、对比度、纹理的局部图像区域将会拥有相对应的局部二值化阈值。
常用的局部自适应阈值是局部邻域块的均值和局部邻域块的高斯加权和。将处理窗口设为矩形移动窗,设r为处理窗口的半径,μ为窗口内像素均值,σ2为窗口内像素方差,I(x,y)为输入像素值,g(x,y)为分割后的像素值,K为一个大于0的常数。有如下定义: