the formula of beta function

beta function: ∫ 0 1 x m ( 1 − x ) n d x \int_0^1x^m(1-x)^ndx 01xm(1x)ndx
考虑分部积分,构造 u ( x ) = x m , v ′ ( x ) = ( 1 − x ) n u(x)=x^m,v'(x)=(1-x)^n u(x)=xm,v(x)=(1x)n
v ( x ) = − ( 1 − x ) n + 1 n + 1 v(x)=-\frac{(1-x)^{n+1}}{n+1} v(x)=n+1(1x)n+1
∫ 0 1 x m ( 1 − x ) n d x = ∫ 0 1 u ( x ) v ′ ( x ) d x = ∣ 0 1 u ( x ) v ( x ) − ∫ 0 1 u ′ ( x ) v ( x ) \int_0^1x^m(1-x)^ndx=\int_0^1u(x)v'(x)dx=|_0^1u(x)v(x)-\int_0^1u'(x)v(x) 01xm(1x)ndx=01u(x)v(x)dx=01u(x)v(x)01u(x)v(x)
m > 0 m>0 m>0 = ∫ 0 1 m x m − 1 ( 1 − x ) n + 1 n + 1 d x =\int_0^1\frac{mx^{m-1}(1-x)^{n+1}}{n+1}dx =01n+1mxm1(1x)n+1dx
m = 0 m=0 m=0 = ∣ 0 1 − ( 1 − x ) n + 1 n + 1 =|_0^1-\frac{(1-x)^{n+1}}{n+1} =01n+1(1x)n+1
发现 m > 0 m>0 m>0时的式子也是beta function的形式,不断迭代,可得原式 = m ! n ! ( m + n + 1 ) ! =\frac{m!n!}{(m+n+1)!} =(m+n+1)!m!n!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值