beta function:
∫
0
1
x
m
(
1
−
x
)
n
d
x
\int_0^1x^m(1-x)^ndx
∫01xm(1−x)ndx
考虑分部积分,构造
u
(
x
)
=
x
m
,
v
′
(
x
)
=
(
1
−
x
)
n
u(x)=x^m,v'(x)=(1-x)^n
u(x)=xm,v′(x)=(1−x)n
则
v
(
x
)
=
−
(
1
−
x
)
n
+
1
n
+
1
v(x)=-\frac{(1-x)^{n+1}}{n+1}
v(x)=−n+1(1−x)n+1
故
∫
0
1
x
m
(
1
−
x
)
n
d
x
=
∫
0
1
u
(
x
)
v
′
(
x
)
d
x
=
∣
0
1
u
(
x
)
v
(
x
)
−
∫
0
1
u
′
(
x
)
v
(
x
)
\int_0^1x^m(1-x)^ndx=\int_0^1u(x)v'(x)dx=|_0^1u(x)v(x)-\int_0^1u'(x)v(x)
∫01xm(1−x)ndx=∫01u(x)v′(x)dx=∣01u(x)v(x)−∫01u′(x)v(x)
当
m
>
0
m>0
m>0时
=
∫
0
1
m
x
m
−
1
(
1
−
x
)
n
+
1
n
+
1
d
x
=\int_0^1\frac{mx^{m-1}(1-x)^{n+1}}{n+1}dx
=∫01n+1mxm−1(1−x)n+1dx
当
m
=
0
m=0
m=0时
=
∣
0
1
−
(
1
−
x
)
n
+
1
n
+
1
=|_0^1-\frac{(1-x)^{n+1}}{n+1}
=∣01−n+1(1−x)n+1
发现
m
>
0
m>0
m>0时的式子也是beta function的形式,不断迭代,可得原式
=
m
!
n
!
(
m
+
n
+
1
)
!
=\frac{m!n!}{(m+n+1)!}
=(m+n+1)!m!n!
the formula of beta function
最新推荐文章于 2024-11-02 21:14:53 发布