陶哲轩实分析(上)11.5及习题-Analysis I 11.5

博客详细讨论了Exercise 11.5.1,证明了当函数f在区间I上分段连续时,根据Proposition 11.5.3和Theorem 11.4.1,可以得出f在I上是Riemann可积的,并给出了解析过程。
摘要由CSDN通过智能技术生成

Exercise 11.5.1

Since f f f is piecewise continuous, we can find a parititon P \mathbf P P such that f ∣ J f|_J fJ is continuous on J J J for ∀ J ∈ P ∀J∈\mathbf P JP. By Proposition 11.5.3, we have f ∣ J f|_J fJ is Riemann integrable on J J J.
We define
F J ( x ) = { f ∣ J ( x ) , x ∈ J 0 , x ∈ I \ J F_J (x)=\begin{cases}f|_J (x),&x∈J\\0,&x∈I\backslash J\end{cases} FJ(x)={fJ(x),0,xJxI\J
By Theorem 11.4.1(g), F J F_J FJ is Riemann integrable on I I I, and we further have
f ( x ) = ∑ J ∈ P F J ( x ) f(x)=\sum_{J∈P}F_J (x) f(x)=JPFJ(x)
So by Theorem 11.4.1(a), f f f is Riemann integrable on I I I.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值