Exercise 11.5.1
Since
f
f
f is piecewise continuous, we can find a parititon
P
\mathbf P
P such that
f
∣
J
f|_J
f∣J is continuous on
J
J
J for
∀
J
∈
P
∀J∈\mathbf P
∀J∈P. By Proposition 11.5.3, we have
f
∣
J
f|_J
f∣J is Riemann integrable on
J
J
J.
We define
F
J
(
x
)
=
{
f
∣
J
(
x
)
,
x
∈
J
0
,
x
∈
I
\
J
F_J (x)=\begin{cases}f|_J (x),&x∈J\\0,&x∈I\backslash J\end{cases}
FJ(x)={f∣J(x),0,x∈Jx∈I\J
By Theorem 11.4.1(g),
F
J
F_J
FJ is Riemann integrable on
I
I
I, and we further have
f
(
x
)
=
∑
J
∈
P
F
J
(
x
)
f(x)=\sum_{J∈P}F_J (x)
f(x)=J∈P∑FJ(x)
So by Theorem 11.4.1(a),
f
f
f is Riemann integrable on
I
I
I.