3. Review of Topology in Rn

这一节回顾了在 R n R^n Rn中的基本拓扑知识,包括metric space,极限和连续,内点外点和边界点。这部分内容在大部分实分析中都有比较详尽的阐述。
Theorem 3.1是比较经典的开闭集交并结论:开集的有限交和无限并仍是开集,闭集的无限交合有限并仍是闭集。Theorem 3.2也比较经典,子空间的开/闭集是子空间和母空间开/闭集的交集。Theorem 3.3是闭包的概念以及闭集的判别条件。Theorem 3.4说明开闭集与选取的metric无关。
Theorem 3.5说明连续函数的限制仍是连续的,复合连续函数仍是连续函数。Theorem 3.6说明多维连续函数的每个分量函数必须是连续的,反之亦然,四则运算不影响连续性,投影函数连续。
Theorem 3.7说明连续性和极限的关系(在非isolated point上满足当 x → x 0 x\to x_0 xx0时, f ( x ) → f ( x 0 ) f(x)\to f(x_0) f(x)f(x0)Theorem 3.8将上一定理的结果拓展到n维

Exercises

Throughout, let X X X be a metric space with metric d d d.
Exercise 1. Show that U ( x 0 ; ϵ ) U(x_0;\epsilon) U(x0;ϵ) is an open set.
Solution: For ∀ x ∈ U ( x 0 ; ϵ ) \forall x\in U(x_0;\epsilon ) xU(x0;ϵ), we have d ( x , x 0 ) < ϵ d(x,x_0 )<\epsilon d(x,x0)<ϵ, thus δ : = ϵ − d ( x , x 0 ) > 0 \delta :=\epsilon -d(x,x_0 )>0 δ:=ϵd(x,x0)>0, consider the set U ( x , δ ) U(x,\delta) U(x,δ), for any y ∈ U ( x , δ ) y\in U(x,\delta ) yU(x,δ), we can have d ( y , x 0 ) ≤ d ( y , x ) + d ( x , x 0 ) < δ + d ( x , x 0 ) = ϵ d(y,x_0 )\leq d(y,x)+d(x,x_0 )<\delta +d(x,x_0 )=\epsilon d(y,x0)d(y,x)+d(x,x0)<δ+d(x,x0)=ϵ, so y ∈ U ( x 0 ; ϵ ) y\in U(x_0;\epsilon) yU(x0;ϵ) and U ( x , δ ) ⊂ U ( x 0 ; ϵ ) U(x,\delta )\subset U(x_0;\epsilon ) U(x,δ)U(x0;ϵ), which means U ( x 0 ; ϵ ) U(x_0;\epsilon ) U(x0;ϵ) is an open set.

Exercise 2. Let Y ⊂ X Y\subset X YX. Give an example where A A A is open in Y Y Y but not open in X X X. Give an example where A A A is closed in Y Y Y but not closed in X X X.
Solution: Let X = ( − 1 , 2 ) , Y = A = [ 0 , 1 ] X=(-1,2),Y=A=[0,1] X=(1,2),Y=A=[0,1], then A A A is open in Y Y Y, but not open in X X X.
Let X = [ 0 , 1 ] , Y = A = [ 0 , 1 ) X=[0,1],Y=A=[0,1) X=[0,1],Y=A=[0,1), then A A A is closed in Y Y Y, but not closed in X X X.

Exercise 3. Let A ⊂ X A\subset X AX. Show that if C C C is a closed set of X X X and C C C contains A A A, then C C C contains A ‾ \overline{A} A.
Solution: Let x x x be any limit point of A A A, then every ϵ \epsilon ϵ-neighborhood of x x x intersects A A A with a point y ≠ x y\neq x y=x, thus every ϵ \epsilon ϵ-neighborhood of x x x intersects C C C with a point y ≠ x y\neq x y=x, so x x x is a limit point of C C C. Since C C C is closed, x ∈ C x\in C xC, and A ‾ ⊂ C \overline{A}\subset C AC.

Exercise 4. ( a ) Show that if Q Q Q is a rectangle, then Q Q Q equals the closure of Int Q \text{Int} Q IntQ.
( b ) If D D D is a closed set, what is the relation in general between the set D D D and the closure of Int  D \text{Int }D Int D?
( c ) If U U U is an open set, what is the relation in general between the set U U U and the interior of U ‾ \overline{U} U?
Solution:
( a ) Since Int  Q ⊆ Q \text{Int }Q\subseteq Q Int QQ and Q Q Q is closed, by Exercise 3 we know Int  Q ‾ ⊆ Q \overline{\text{Int }Q}\subseteq Q Int QQ, now for any q ∈ Q \mathbf{q}\in Q qQ, if q ∉ Int  Q \mathbf{q}\notin \text{Int }Q q/Int Q, then q ∈ Bd  Q \mathbf{q}\in\text{Bd }Q qBd Q, if we denote Q = [ a 1 , b 1 ] × ⋯ × [ a n , b n ] Q=[a_1,b_1 ]\times \dots \times [a_n,b_n ] Q=[a1,b1]××[an,bn] and q = ( q 1 , … , q n ) \mathbf{q}=(q_1,\dots ,q_n) q=(q1,,qn), then at least one q i q_i qi equals a i a_i ai or b

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值