10. The Integral over a Rectangle

本书对多元积分的处理是先推广一元黎曼积分,本节仅对黎曼积分的一些大家熟知的概念作了推广,包括partition以及黎曼和等。比较重要的是Theorem 10.3(Riemann condition),下积分和上积分相等的充要条件,与一元黎曼积分几乎完全类似。Theorem 10.4是黎曼条件的一个小应用,证明常数函数是可积的。

Exercises

Exercise 1. Let f , g : Q → R f,g:Q\to\mathbf{R} f,g:QR be bounded functions such that f ( x ) ≤ g ( x ) f(\mathbf{x})\leq g(\mathbf{x}) f(x)g(x) for x ∈ Q \mathbf{x}\in Q xQ. Show that ∫ ‾ Q f ≤ ∫ ‾ Q g \underline{\int}_Qf\leq\underline{\int}_Qg QfQg and ∫ ‾ Q f ≤ ∫ ‾ Q g \overline{\int}_Qf\leq\overline{\int}_Qg QfQg.
Solution: As ∫ ‾ Q f = sup ⁡ P { L ( f , P ) } \underline{\int}_Qf=\sup_P\{L(f,P)\} Qf=supP{ L(f,P)}, for any ϵ > 0 \epsilon>0 ϵ>0, we can find a partition P P P such that
∫ ‾ Q f − ϵ < L ( f , P ) ≤ L ( g , P ) ≤ ∫ ‾ Q g \underline{\int}_Qf-\epsilon<L(f,P)\leq L(g,P)\leq\underline{\int}_Qg Qfϵ<L(f,P)L(g,P)Qg
which gives ∫ ‾ Q f ≤ ∫ ‾ Q g \underline{\int}_Qf\leq\underline{\int}_Qg QfQg. Similarly, we can find a partition P ′ P' P such that
∫ ‾ Q g + ϵ > U ( g , P ′ ) ≥ U ( f , P ′ ) ≥ ∫ ‾ Q f \overline{\int}_Qg+\epsilon> U(g,P')\geq U(f,P')\geq \overline{\int}_Qf Qg+ϵ>U(g,P)U(f,P)Qf
and it follows that ∫ ‾ Q f ≤ ∫ ‾ Q g \overline{\int}_Qf\leq\overline{\int}_Qg QfQg.

Exercise 2. Suppose f : Q → R f:Q\to\mathbf{R} f:QR is continuous. Show f f f is integrable over Q Q Q.
Solution: We suppose Q ∈ R n Q\in\mathbf{R}^n QRn, then Q Q Q is bounded, and f f f is in fact uniformly continuous on Q Q Q, thus for any ϵ > 0 \epsilon>0 ϵ>0, there is a δ > 0 \delta>0 δ>0 such that
∣ x − y ∣ < δ    ⟹    ∣ f ( x ) − f ( y ) ∣ < ϵ v ( Q ) |\mathbf{x}-\mathbf{y}|<\delta\implies |f(\mathbf{x})-f(\mathbf{y})|<\frac{\epsilon}{v(Q)} xy<δf(x)f(y)<v(Q)ϵ
Choose a partition P P P with mesh  P i < δ / n \text{mesh }P_i<\delta/\sqrt{n} mesh Pi<δ/n for i = 1 , … , n i=1,\dots,n i=1,,n, then within each subrectangle contained in P P P, f f f would have diversion at most ϵ / v ( Q ) \epsilon/v(Q) ϵ/v(Q), thus
U ( f , P ) − L ( f , P ) < ϵ v ( Q ) ∑ R ⊂ P v ( R ) = ϵ U(f,P)-L(f,P)<\frac{\epsilon}{v(Q)}\sum_{R\subset P}v(R)=\epsilon U(f,P)L(f,P)<v(Q)ϵRPv(R)=ϵ

Exercise 3. Let [ 0 , 1 ] 2 = [ 0 , 1 ] × [ 0 , 1 ] [0,1]^2=[0,1]\times [0,1] [0,1]2=[0,1]×[0,1]. Let f : [ 0 , 1 ] 2 → R f:[0,1]^2\to\mathbf{R} f:[0,1]2R be defined by setting f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 if x ≠ y x\neq y x=y, and f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 if y = x y=x y=x. Show that f f f is integrable over [ 0 , 1 ] 2 [0,1]^2 [0,1]2.
Solution: For any ϵ > 0 \epsilon>0 ϵ>0, let N = [ 1 / ϵ ] + 1 N=[1/\epsilon]+1 N=[1/ϵ]+1, and P ′ = { 0 , 1 / N , … , ( N − 1 ) / N , 1 } P'=\{0,1/N,\dots,(N-1)/N,1\} P={ 0,1/N,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值