剑指 Offer II 013. 二维子矩阵的和

给定一个二维矩阵 matrix,以下类型的多个请求:

计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2) 。
实现 NumMatrix 类:

NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
int sumRegion(int row1, int col1, int row2, int col2) 返回左上角 (row1, col1) 、右下角 (row2, col2) 的子矩阵的元素总和。
 

示例 1:

输入: 
["NumMatrix","sumRegion","sumRegion","sumRegion"]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出: 
[null, 8, 11, 12]

解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/O4NDxx
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

java:

方法一:基本思路:最直观的思路,直接从左上边界到右下边界遍历,计算和;

class NumMatrix {
    public int[][] mat;

    public NumMatrix(int[][] matrix) {
        //给定二维数组,对二维数组进行初始化
        // [[3,0,1,4,2],
        //  [5,6,3,2,1],
        //  [1,2,0,1,5],
        //  [4,1,0,1,7],
        //  [1,0,3,0,5]]]
        this.mat = matrix;        
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        int total = 0;
        //求取给定下标的值
        for(int i = row1;i <= row2 ; i++){
            for(int j = col1;j<=col2;j++){
                total += this.mat[i][j];
            }
        }
        return total;
    }
}

方法二:二维前缀和

java:

class NumMatrix {
    public int[][] preSumMat;

    public NumMatrix(int[][] matrix) {
        //给定二维数组,对二维数组进行初始化
        // [[3,0,1,4,2],
        //  [5,6,3,2,1],
        //  [1,2,0,1,5],
        //  [4,1,0,1,7],
        //  [1,0,3,0,5]]]
        //在计算后面元素的前缀和,可以复用已经计算好了的前缀和;
        //经过计算,当前元素的前缀和为 : 
        //preSumMat[i][j] = matrix[i][j] + preSumMat[i][j-1] +preSumMat[i-1][j] - preSumMat[i-1][j-1]
        //为了不特殊处理当 0行和0列元素 下标越界问题,直接初识前缀和矩阵多初始化一行和一列,所以length+1
        //初始化,直接存储输入的前缀和矩阵,
        this.preSumMat = new int[matrix.length+1][matrix[0].length+1];
        //遍历matrix填充前缀和矩阵
        for(int i= 0; i< matrix.length; i++){
            for(int j = 0 ; j < matrix[0].length ; j++){
                this.preSumMat[i+1][j+1] = matrix[i][j] + this.preSumMat[i+1][j]+this.preSumMat[i][j+1] - this.preSumMat[i][j];
            }
        }
               
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        //直接通过存储的前缀和公式进行计算
        //不加1等情形: this.preSumMat[row2][col2]-this.preSumMat[row1-1][col2]-this.preSumMat[row2][col1-1]+this.preSumMat[row1-1][col1-1]
        return this.preSumMat[row2+1][col2+1] - this.preSumMat[row1][col2+1] -this.preSumMat[row2+1][col1] +this.preSumMat[row1][col1];
    }
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * int param_1 = obj.sumRegion(row1,col1,row2,col2);
 */

图解图片来自:

力扣icon-default.png?t=M5H6https://leetcode.cn/problems/O4NDxx/solution/offerii013er-wei-zi-ju-zhen-de-he-by-log-lpt4/考题来自:

力扣icon-default.png?t=M5H6https://leetcode.cn/problems/O4NDxx/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑾怀轩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值