【深度学习模型复杂度评估指标】深度学习模型性能和效率的评估指标介绍和计算方法!
【深度学习模型复杂度评估指标】深度学习模型性能和效率的评估指标介绍和计算方法!
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz
深度学习模型性能和效率的对比指标中,以下是每个指标的详细解释及其代码计算方法:
1. FLOPs (Floating Point Operations per Second)
- FLOPs 代表模型在一次前向传播过程中需要执行的浮点运算数,单位为G(即10^9)。FLOPs 是模型复杂度的一个衡量标准,FLOPs