信息用来消除事件的不确定性(判断一张图片是猫、狗、猪、蛙的神经网络,其输出层采用softmax,即该图片是各个类别的概率。该模型输出的结果就是信息,通过这个结果,可以判断图片属于哪一类别 [消除了该图片属于哪一类别的不确定性]),样本的标签 是 信息,通过样本的标签可知道该样本属于哪一类别 [消除该样本属于哪一类别的不确定性]
信息熵用来度量一条信息的信息量,计算公式是,X是类别集合,P(x)表示该样本数据x类别的概率。变量的不确定性越大时,其信息熵越大,因为要弄清楚一件不确定性很大的事,需要的信息量就越大。
标准的交叉熵是,其中n代表n种类别,代表该类别的编号,该样本属于这一类别的概率。利用错误的分布来衡量一个模型输出的信息量,利用交叉熵做损失函数,本质上是求出模型输出结果的交叉熵,及样本标签的信息熵(其标签的信息熵是固定值),相减,可得出相对熵(KL散度)。利用KL散度衡量模型输出的概率分布与真实概率分布的差距。
原始GAN的目标函数,及将目标函数的期望采用积分表示:
原始GAN的目标函数是两个交叉熵简化形式(真实样本和生成样本的交叉熵),分别乘上各自分布的期望再相加。
- 真实样本:其完整交叉熵是,其中分别是判别器判断该样本是真实样本(1)还是生成样本(0)的概率
- 生成样本:其完整交叉熵是,其中分别是判别器判断该生成样本是真实(1)还是生成(0)的概率。省略可以得到,目标函数是为了D(G(z))尽可能小,但为了与真实样本的交叉熵函数方向一致(都进行最大化),故使用1-logD(G(z))。
期望
对于离散随机变量
- 概率函数:一次表示一个取值的概率。摇色子,X表示摇到的数,P(X=1)= 1/6
- 概率分布:一次表示全部取值的概率。
- 概率分布函数:累加 概率函数,
连续性随机变量
- 概率密度函数,其实就是 连续型变量的概率函数
- 概率分布函数,累加 概率密度函数;概率密度函数是概率分布函数的导函数
数学期望:将实验中每次可能 产生的结果的概率 乘以其结果 的总和,反映随机变量平均取值的大小。对于连续型随机变量x,其概率密度函数f(x),数学期望的微积分形式是
数学期望和GAN的积分形式怎么联系起来?(GAN期望的积分形式少了一个x)
x~pdata,pdata是什么?
FenceGAN中判别器的目标函数:
FenceGAN中判别器的目标函数,对原始GAN目标函数的改动是
- 省去了期望,只使用两个交叉熵相加
- 前面乘上一个,N是分类数
- 在生成样本的交叉熵前加入一个权重gamma