GAN交叉熵

信息用来消除事件的不确定性(判断一张图片是猫、狗、猪、蛙的神经网络,其输出层采用softmax,即该图片是各个类别的概率。该模型输出的结果就是信息,通过这个结果,可以判断图片属于哪一类别 [消除了该图片属于哪一类别的不确定性]),样本的标签 是 信息,通过样本的标签可知道该样本属于哪一类别 [消除该样本属于哪一类别的不确定性]

信息熵用来度量一条信息的信息量,计算公式是- \sum \limits_{x \in X} P(x) \log{P(x)},X是类别集合,P(x)表示该样本数据x类别的概率。变量的不确定性越大时,其信息熵越大,因为要弄清楚一件不确定性很大的事,需要的信息量就越大。

标准的交叉熵- \sum \limits_{i=1}^n y_i \log({y_i}' ),其中n代表n种类别,y_i代表该类别的编号,{y_i}'该样本属于这一类别的概率。利用错误的分布来衡量一个模型输出的信息量,利用交叉熵做损失函数,本质上是求出模型输出结果的交叉熵,及样本标签的信息熵(其标签的信息熵是固定值),相减,可得出相对熵(KL散度)。利用KL散度衡量模型输出的概率分布与真实概率分布的差距。

 

 

原始GAN的目标函数,及将目标函数的期望采用积分表示:

原始GAN的目标函数是两个交叉熵简化形式(真实样本和生成样本的交叉熵),分别乘上各自分布的期望再相加。

  • 真实样本:其完整交叉熵是1*log D(x_1)+0*logD(x_0),其中D(x_0),D(x_1)分别是判别器判断该样本是真实样本(1)还是生成样本(0)的概率
  • 生成样本:其完整交叉熵是1*log D(G(z_1))+0*logD(G(z_0)),其中D(G(z_0)),D(G(z_1))分别是判别器判断该生成样本是真实(1)还是生成(0)的概率。省略可以得到logD(G(z)),目标函数是为了D(G(z))尽可能小,但为了与真实样本的交叉熵函数方向一致(都进行最大化),故使用1-logD(G(z))。

 

期望

对于离散随机变量

  • 概率函数:一次表示一个取值的概率。摇色子,X表示摇到的数,P(X=1)= 1/6
  • 概率分布:一次表示全部取值的概率。

        

  • 概率分布函数:累加 概率函数,

连续性随机变量

  • 概率密度函数,其实就是 连续型变量的概率函数
  • 概率分布函数,累加 概率密度函数;概率密度函数是概率分布函数的导函数

数学期望:将实验中每次可能 产生的结果的概率 乘以其结果 的总和,反映随机变量平均取值的大小。对于连续型随机变量x,其概率密度函数f(x),数学期望的微积分形式是 

数学期望和GAN的积分形式怎么联系起来?(GAN期望的积分形式少了一个x)

x~pdata,pdata是什么?

 

FenceGAN中判别器的目标函数:

FenceGAN中判别器的目标函数,对原始GAN目标函数的改动是

  • 省去了期望,只使用两个交叉熵相加
  • 前面乘上一个\frac{1}{N},N是分类数
  • 在生成样本的交叉熵前加入一个权重gamma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值