ALS(Alternating Least Squares)算法是基于矩阵分解的协同过滤算法中的一种,它已经集成到 Spark 的 Mllib 库中,使用起来比较方便。
1.矩阵分解
这里的矩阵分解可以理解为,将一个 m×n 的矩阵A分解为一个m×k的矩阵U和n×k的矩阵V的转置的乘积的近似值,即
将这个公式放到推荐系统中,则 表示用户对产品的偏好评分矩阵,
代表用户对隐含特征的偏好矩阵,
表示产品所包含的隐含特征矩阵。
为了使矩阵 U 和 V 转置的乘积尽可能接近 A,我们使用用户喜好特征矩阵 U(m∗k) 中的第 i 个用户的特征向量
,和产品特征矩阵V(n∗k)第j个产品的特征向量
预测打分矩阵 A(m∗n) 中的 ,需要最小化平方误差损失函数:
![C =\sum_{i,j\in R}[(a_{ij}-u_{i}v_{j}^T)^{2}+\lambda(u_{i}^2+v_{j}^2) ]](https://i-blog.csdnimg.cn/blog_migrate/a0f5c44c2198a0d89bbae3d914c415db.gif)
有了损失函数之后,下面就开始介绍优化方法。通常的优化方法分为两种:交叉最小二乘法(alternative least squares)和随机梯度下降法(stochastic gradient descent)。
2.交替最小二乘法(ALS)
在开始的时候,随机初始化一个
的值,因此上式就变成了一个关于
的函数,问题转化为最小二乘问题,用最小二乘法求
的最优解:

其迭代步骤是:首先随机初始化
,利用上述方法更新得到
,然后利用
的表达式更新
,直到RMSE(均方根误差)变化很小或者到达最大迭代次数为止。
335

被折叠的 条评论
为什么被折叠?



