网络退化与恒等映射:深入理解残差网络(ResNet)
在深度学习中,网络退化是指当神经网络的深度增加时,性能反而下降的现象。这种情况可能导致训练误差和测试误差之间的差距增大,造成模型性能的瓶颈。为了解决这个问题,残差网络(ResNet)提出了一种新的网络结构,利用恒等映射来解决网络退化问题。
残差网络是由微软研究院的Kaiming He等人于2015年提出的一种深度卷积神经网络。它在训练过程中引入了跨层的恒等映射,以便更好地优化深层网络。下面我们将详细介绍网络退化问题以及残差网络中的恒等映射。
网络退化问题
在传统的深度神经网络中,随着网络的加深,网络的训练误差和测试误差之间的差距会逐渐增大。这是由于深层网络存在梯度消失和梯度爆炸等问题,导致网络的优化变得困难。
梯度消失是指在反向传播过程中,梯度逐渐变小并趋近于零。这使得较浅层的网络参数更新缓慢,而深层网络的参数几乎没有更新,从而导致网络性能的下降。另一方面,梯度爆炸是指梯度值变得非常大,超过了网络的数值范围,导致数值不稳定和优化困难。
网络退化问题的出现限制了深度神经网络的发展。为了解决这个问题,残差网络提出了一种新的网络结构,即恒等映射。
恒等映射
在残差网络中,恒等映射是指将输入直接映射到输出的操作。