在一个单位圆内部均匀采样,即在单位圆内部随机取一个采样点,而每个采样点被取到的概率都是1/Pi。这个问题看似非常简单,但是可能要比想象中复杂一点。这里的采样我们从canonical uniform variable开始,即我们只能够生成从0到1的随机数,而其分布是均匀分布的。
首先,最容易想到的方法就是rejection method。在单位圆的外部做一个Bounding Box,紧紧的包住这个单位圆。然后用两个随机点分别在两个轴向上取点,从而均匀的随机提取正方形内部的一个点。然后进行简单的测试,当这个点与圆的中心距离大于1的时候,我们按照刚才做法重新生成一个随机点,直到其在圆的内部为止。那么这个点就是我们想要的点了,而且是完全均匀分布的。
这种方法是rejection sampling method的一种,最大的优点在于简单,易于实现。但是在效率方面,这种方法会有很大弊端。我们在选取到最终结果之前,很可能需要生成很多随机点,当随机数生成算法代价足够大的时候,这种方法的效率是不高的。从面积的比率来看,随机点被接受和拒绝的比例为Pi/(4-Pi)。
那么,有没有更合适的方法呢?
还有一种叫做inverse sampling method的方法可以被应用,这种方法的要求可能多一些,需要函数是可积的,并且CDF是可逆的。好在这个例子里面,我们可以把问题变简单一些。
除了上述想法,最直观的想法就是用极坐标系来生成随机点。我们假设有两个从0到1的随机数,a,b。那么,我们另:
r = a
theta = b * 2 * Pi
上述随机点显然可以布满整个圆,但是并不是均匀分布的。简单证明如下,如果上
PBRT学习笔记:在单位圆内部均匀采样
最新推荐文章于 2024-05-07 00:48:34 发布