大语言模型无代码构建知识图谱(1)--提示工程准备

本文探讨了ChatGPT4.0的强大问答功能与知识图谱在智能场景中的区别,指出两者各有优势,大语言模型虽能辅助知识图谱构建,但知识图谱在提供准确、结构化信息方面不可或缺。通过实例展示了如何利用大语言模型进行人物关系和事件提取,强调了两者结合的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        2023年3月15日,ChatGPT4.0的横空出世,将人们对大语言模型的关注推到了风口浪尖。由于其在智能问答、翻译以及文本生成等工作任务上的卓越表现,业界一度出现了不再需要发展知识图谱相关技术的观点,知识图谱相关概念严重受挫。无可置疑的是,大语言模型的确在智能问答等功能上与知识图谱存在交集,并且表现令人惊讶。但由于大语言模型不可避免的“幻觉”问题,使其存在无法给出准确、全面回答的情况,故而无法适应用户全面的场景需求。而知识图谱存储着大量结构化的信息,可以表达复杂的知识关系,能够满足用户准确、有效的检索需求。由此看来,二者各有所长,不是简单的替代关系,更有甚者二者可以彼此促进。众所周知,知识图谱的构建过程是相当昂贵的,开发者需要从海量的文档中抽取、对齐各类知识,工作量巨大,准确度要求也高。由于大语言模型拥有很强的泛化能力,因此其能有效抽取、识别特定领域文档中的实体、属性以及关系知识,可大大降低知识图谱的构建成本。

    下面我们将通过一个示例,介绍如何使用大语言模型在无代码的情况下,辅助构建知识图谱。

案例设计

    在该案例中,我们使用如下内容进行知识提取。

刘彻之母王娡在怀孕时,汉景帝刘启尚为太子。王娡梦见太阳进入她的怀中,醒来告诉刘启后,刘启认为这是高贵的征兆。刘彻还未出生,他的祖父汉文帝刘恒就驾崩了。刘启继位,是为景帝,不久刘彻出生。刘彻是汉景帝第十子,亦是王娡唯一的儿子。 [3]

汉景帝前元四年(前153年)四月二十三日,汉景帝立栗姬所生的长子刘荣为皇太子,刘彻亦同时被封为胶东王。 [4]刘彻的姑母馆陶公主刘嫖向栗姬为其女陈氏提亲,被栗姬拒绝,而王娡却许诺让刘彻娶陈氏,因此刘嫖不断向景帝诋毁栗姬而赞誉王娡,栗姬亦曾出言不逊而触怒景帝,天平遂逐渐向王娡母子倾斜。前元六年(前151年)薄皇后被废黜后,王娡暗中指使大行令奏请立栗姬为皇后,使景帝对栗姬的不满达到极点,于是处死大行令、疏远栗姬,在前元七年(前150年)正月废刘荣为临江王。四月十七日,景帝立王娡为皇后;二十五日,立时年七岁的刘彻为皇太子。 [5-6]

刘彻成为储君后,景帝拜卫绾为太子太傅、王臧为太子少傅,让他们辅导刘彻。 [119-120]汉景帝后元三年(前141年)正月十七日,刘彻行冠礼。十天后,景帝驾崩,刘彻继位。 [7]

    该信息取自百度百科关于汉武帝刘彻的一个片段。我们设计提取该段信息中的以下三类知识:

  • 人物及头衔,获取文本中的人物信息作为知识的主体
  • 人物关系,包括:源人物、关系、目的人物三部分信息
  • 人物相关的事件,包括:人物、时间、事件描述三部分信息

提示工程准备

        笔者选定阿里的通义千问模型作为我们的大语言模型,用它提供的Web对话界面来进行提示工程。Web对话界面给出的答案可能会与其API接口有所差异,但对提示工程的影响整体不大。提示工程的尝试过程笔者在此就不展示了。下面可以看一下大模型的知识抽取能力,很大程度上超出了笔者的预期。

人物及头衔抽取

提示

请帮我分析####后文字中的人物及头衔。并将结果输出为json格式

####

文本片段

应答

Json

[

  {

    "人物": "刘彻",

    "头衔": [

      "汉景帝第十子",

      "胶东王",

      "皇太子",

<think>好的,用户的题是关于如何让大语言模型(LLM)与知识图谱(KG)进行交互或调用,特别是实现数据集成和增强推理能力。我需要结合提供的引用内容来构建回答。 首先,我得理解用户的具体需求。他们可能是在寻找将两种技术结合的方法,以提高模型的数据整合能力和推理效果。根据引用1和2,知识图谱构建和扩展可以利用LLM来处理实体、关系抽取等任务。而引用4提到知识图谱可以作为LLM的外部知识源,提升可靠性和可解释性。 接下来,我需要组织回答的结构。可能需要分步骤说明,比如数据集成和增强推理能力的不同方法。在数据集成方面,LLM可以辅助知识图谱构建,如实体抽取、关系抽取,以及数据清洗对齐,这部分引用1和2都有相关内容。而知识图谱反过来可以为LLM提供结构化数据,比如三元组或规则,引用4提到这一点。 在增强推理能力方面,引用1提到关系推理算法设计,可以用图神经网络等技术。而LLM可以利用知识图谱中的路径信息进行推理,或者通过知识增强的提示工程,引导模型生成更准确的回答。此外,引用4还提到知识图谱用于生成内容的验证,这也是增强推理的一部分。 需要确保回答中引用正确的来源,例如在提到实体抽取时引用2,在数据整合时引用1知识注入时引用4。同时,用户可能需要具体的例子或步骤,所以需要给出具体的应用方式,如指令调优、动态知识注入等。 另外,用户可能对实际应用场景感兴趣,比如智能客服或医疗诊断,可以结合引用中的信息举例说明。还要注意生成的相关题,需要覆盖数据集成方法、知识图谱增强推理的具体技术、挑战以及应用场景,这样用户可以有进一步探索的方向。 最后,检查是否符合格式要求:行内公式用$,独立公式用$$,正确使用引用标识,结构清晰,使用中文。确保每个技术点都有对应的引用支持,并且回答自然流畅,帮助用户逐步理解如何实现LLM与KG的交互。</think>大语言模型知识图谱的交互调用可通过多模态知识融合、结构化信息注入和动态推理增强三个维度实现数据集成与推理能力提升,以下是具体技术路径及实现方式: ### 一、数据集成实现路径 1. **知识图谱构建增强** - **实体关系联合抽取**:通过LLM的文本理解能力自动识别非结构化数据中的实体及其关系,例如使用BERT变体模型处理$E={(h,r,t)|h,t∈\mathcal{E},r∈\mathcal{R}}$形式的三元组抽取[^2] - **多源数据对齐**:利用LLM的语义匹配能力建立跨数据源的实体消歧,如通过对比学习算法$\min_\theta \mathbb{E}_{(x,x^+)}[-\log\frac{e^{f_\theta(x)^Tf_\theta(x^+)/\tau}}{e^{f_\theta(x)^Tf_\theta(x^+)/\tau}+\sum_{x^-}e^{f_\theta(x)^Tf_\theta(x^-)/\tau}}}]$实现实体对齐[^1] 2. **知识注入机制** - **结构化知识编码**:将知识图谱转化为可嵌入的格式$KG_{emb} = \text{GNN}(A,X)$,其中$A$为邻接矩阵,$X$为节点特征矩阵,通过图神经网络编码后与LLM隐状态融合[^2] - **动态知识检索**:建立实时知识检索接口$R(q)=TopK(\text{Sim}(f(q),KG_{emb}))$,在推理时动态检索相关三元组[^4] ### 二、推理能力增强方法 1. **符号推理与神经推理融合** - 构建混合推理框架: $$ \begin{aligned} \mathcal{P}_{LLM} &= \text{Softmax}(W_H h_t) \\ \mathcal{P}_{KG} &= \text{PathRank}(e_s \xrightarrow{r_1} \cdots \xrightarrow{r_n} e_t) \\ \mathcal{P}_{final} &= \alpha \mathcal{P}_{LLM} + (1-\alpha)\mathcal{P}_{KG} \end{aligned} $$ 其中路径排序算法通过随机游走计算$P(e_t|e_s)=\sum_{p\in Paths(e_s,e_t)}\prod_{r_i\in p}P(r_i|e_{i-1})}$[^1] 2. **可解释推理增强** - 实现推理过程可视化: $$ \text{EvidenceChain} = \{(e_i,r_j,e_k)| \text{AttnScore}(h_t, e_i)>\theta\} $$ 通过注意力机制追踪LLM决策依赖的知识图谱三元组 ### 三、典型应用架构 ```python # 知识增强型推理伪代码 def knowledge_augmented_inference(query, kg): # 知识检索 subgraphs = kg.retrieve_subgraphs(query, top_k=3) # 提示工程构造 prompt = f"""基于以下知识进行推理: {subgraphs} 题:{query}""" # 大模型生成 response = llm.generate(prompt, max_tokens=200) # 知识验证 verified_response = kg.validate_facts(response) return verified_response ``` ### 四、性能优化关键技术 1. **增量式知识更新** 采用双存储机制: $$ \mathcal{K} = \mathcal{K}_{static} \oplus \mathcal{K}_{dynamic} $$ 静态知识库通过RDF三元组存储,动态知识库使用向量数据库实现实时更新[^3] 2. **多粒度交互控制** 设计门控机制调节知识影响权重: $$ g_t = \sigma(W_g[h_t; k_t]) $$ $$ \tilde{h}_t = g_t \cdot h_t + (1-g_t) \cdot k_t $$ 其中$k_t$为当前时刻注入的知识向量[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值