正态分布变换基于统计的方法估计变换矩阵。
代码如下:
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/ndt_2d.h>
#include <pcl/registration/transformation_estimation_lm.h>
#include <pcl/registration/warp_point_rigid_3d.h>
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
typedef pcl::PointXYZ PointType;
typedef pcl::PointCloud<PointType> Cloud;
typedef Cloud::ConstPtr CloudConstPtr;
typedef Cloud::Ptr CloudPtr;
void
selfTest ()
{
CloudPtr model (new Cloud);
model->points.push_back (PointType (1,1,0));
model->points.push_back (PointType (4,4,0));
model->points.push_back (PointType (5,6,0));
model->points.push_back (PointType (3,3,0));
model->points.push_back (PointType (6,7,0));
model->points.push_back (PointType (7,11,0));
model->points.push_back (PointType (12,15,0));
model->points.push_back (PointType (7,12,0));
CloudPtr data (new Cloud);
data->points.push_back (PointType (3,1,0));
data->points.push_back (PointType (7,4,0));
data->points.push_back (PointType (9,6,0));
pcl::console::setVerbosityLevel (pcl::console::L_DEBUG);
pcl::NormalDistributionsTransform2D<PointType, PointType> ndt;
ndt.setMaximumIterations (40);
ndt.setGridCentre (Eigen::Vector2f (0,0));
ndt.setGridExtent (Eigen::Vector2f (20,20));
ndt.setGridStep (Eigen::Vector2f (20,20));
ndt.setOptimizationStepSize (Eigen::Vector3d (0.4,0.4,0.1));
ndt.setTransformationEpsilon (1e-9);
ndt.setInputTarget (model);
ndt.setInputSource (data);
CloudPtr tmp (new Cloud);
ndt.align (*tmp);
std::cout << ndt.getFinalTransformation () << std::endl;
}
int
main (int argc, char **argv)
{
int iter = 10;
double grid_step = 3.0;
double grid_extent = 25.0;
double optim_step = 1.0;
pcl::console::parse_argument (argc, argv, "-i", iter);
pcl::console::parse_argument (argc, argv, "-g", grid_step);
pcl::console::parse_argument (argc, argv, "-e", grid_extent);
pcl::console::parse_argument (argc, argv, "-s", optim_step);
std::vector<int> pcd_indices;
pcd_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
CloudPtr model (new Cloud);
if (pcl::io::loadPCDFile (argv[pcd_indices[0]], *model) == -1)
{
std::cout << "Could not read file" << std::endl;
return -1;
}
std::cout << argv[pcd_indices[0]] << " width: " << model->width << " height: " << model->height << std::endl;
std::string result_filename (argv[pcd_indices[0]]);
result_filename = result_filename.substr (result_filename.rfind ("/") + 1);
try
{
pcl::io::savePCDFile (result_filename.c_str (), *model);
std::cout << "saving first model to " << result_filename << std::endl;
}
catch(pcl::IOException& e)
{
std::cerr << e.what() << std::endl;
}
Eigen::Matrix4f t (Eigen::Matrix4f::Identity ());
for (size_t i = 1; i < pcd_indices.size (); i++)
{
CloudPtr data (new Cloud);
if (pcl::io::loadPCDFile (argv[pcd_indices[i]], *data) == -1)
{
std::cout << "Could not read file" << std::endl;
return -1;
}
std::cout << argv[pcd_indices[i]] << " width: " << data->width << " height: " << data->height << std::endl;
//pcl::console::setVerbosityLevel(pcl::console::L_DEBUG);
pcl::NormalDistributionsTransform2D<PointType, PointType> ndt;
ndt.setMaximumIterations (iter);
ndt.setGridCentre (Eigen::Vector2f (15,0));
ndt.setGridExtent (Eigen::Vector2f (grid_extent,grid_extent));
ndt.setGridStep (Eigen::Vector2f (grid_step,grid_step));
ndt.setOptimizationStepSize (optim_step);
ndt.setTransformationEpsilon (1e-5);
ndt.setInputTarget (model);
ndt.setInputSource (data);
CloudPtr tmp (new Cloud);
ndt.align (*tmp);
t = t* ndt.getFinalTransformation ();
pcl::transformPointCloud (*data, *tmp, t);
std::cout << ndt.getFinalTransformation () << std::endl;
*model = *data;
try
{
std::string result_filename (argv[pcd_indices[i]]);
result_filename = result_filename.substr (result_filename.rfind ("/") + 1);
pcl::io::savePCDFileBinary (result_filename.c_str (), *tmp);
std::cout << "saving result to " << result_filename << std::endl;
}
catch(pcl::IOException& e)
{
std::cerr << e.what() << std::endl;
}
}
return 0;
}
来源:PCL官方示例