论文精读系列2:EMMA: End-to-End Multimodal Model for Autonomous Driving

论文:https://arxiv.org/pdf/2410.23262(waymo,自认为该开启了通过大模型输出自动驾驶轨迹和各种任务的“大模型范式”)

参考资料:https://zhuanlan.zhihu.com/p/4667962901(该文章很深入,在梳理论文时有许多参考该文章思考的地方)

        尽量让模型寻找隐空间里不易被人类捕捉到的规则

局限:

(1)不能将相机与LIDAR或radar融合,3D空间推理有限;(2)sensor simulation来促进其闭环评估;(3)相较于传统model要更大的计算能力

1.整体框架

image.png

输入:(1)视觉(环视图像);(2)高维指令,如google地图的导航指令,"前方请在第二个匝道右转出匝道这种指令";(3)自车的历史轨迹等状态

输出:模型在预测轨迹之前解释其基本原理,通过思维链COT推理增强了模型的性能和可解释性。模型还预测关键对象的准确 3D/BEV 位置,如图中下面模型的三个附加功能

2.Method

image.png

O是T和V输入给G后的自然语言输出,接下里详细看下论文中这三个都表示什么:

(1)V:Surround-view camera videos提供复杂的环境信息

(2)T:分成Tintent和Tego

Tintent:高维的意图指令,如直行、左转、右转等

Tego:自车的历史轨迹,BEV下一系列的坐标点,坐标为纯文本形式。也可以扩展更高阶的速度和加速度

(3)O:用一系列在BEV空间下的轨迹点表示

### STiL 方法概述 Semi-supervised Tabular-Image Learning (STiL) 是一种用于处理多模态数据的半监督学习方法[^1]。该方法旨在通过结合表格数据和图像数据来提升模型性能,特别是在标注数据有限的情况下。STiL 的核心目标是从不同模态的数据中提取任务相关信息并加以融合。 #### 多模态分类中的任务相关信息探索 在多模态分类场景下,任务相关信息通常分布在不同的数据源之间。STiL 方法通过设计特定机制,在训练过程中逐步识别哪些特征对于当前任务最为重要[^2]。具体而言: - **跨模态关联建模**:STiL 利用注意力机制捕获表格数据与图像数据之间的潜在关系。这种机制能够动态调整各模态的重要性权重,从而聚焦于最相关的部分[^3]。 - **自监督信号增强**:为了充分利用未标记样本的信息,STiL 引入了自监督学习策略。这些策略可以通过预测旋转角度、对比学习等方式生成额外的学习信号,进一步优化模型参数[^4]。 - **联合表示空间构建**:通过对齐两种模态的嵌入向量,STiL 创建了一个统一的任务相关表示空间。这使得即使某些模态缺失或质量较差时,模型仍能保持较高的鲁棒性和准确性[^5]。 以下是实现上述功能的一个简化代码框架: ```python import torch.nn as nn class STILModel(nn.Module): def __init__(self, tabular_dim, image_channels): super(STILModel, self).__init__() # 图像编码器初始化 self.image_encoder = ImageEncoder(image_channels) # 表格数据编码器初始化 self.tabular_encoder = TabularEncoder(tabular_dim) # 跨模态注意层 self.cross_modal_attention = CrossModalAttention() # 输出层定义 self.classifier = Classifier() def forward(self, table_data, image_data): img_features = self.image_encoder(image_data) tab_features = self.tabular_encoder(table_data) combined_features = self.cross_modal_attention(img_features, tab_features) output = self.classifier(combined_features) return output ``` 此代码展示了如何分别对图像和表格数据进行编码,并利用 `CrossModalAttention` 层完成两者间的交互操作[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值