大模型时代5个最顶级的向量数据库

大家好,数字时代推动我们进入了由人工智能和机器学习为主导的时代,向量数据库已经成为存储、搜索和分析高维数据向量的不可或缺的工具,本文将介绍5个顶级的向量数据库。

1.Chroma

图片

图片

使用ChromaDB构建LLM应用程序

Chroma是开源嵌入数据库。Chroma使知识、事实和技能可插入LLM从而轻松构建LLM应用程序,可以便捷地管理文本文档、将文本转换为嵌入内容,以及进行相似性搜索。

主要功能:

  • 功能丰富:查询、过滤、密度估计和许多其他功能

  • LangChain(Python和JavScript),LlamaIndex,可用支持

  • 在Python notebook中运行的相同API可扩展到生产集群

2.Pinecone

图片

图片

Pinecone向量数据库

Pinecone是一个托管向量数据库平台,专门用于解决与高维数据相关的独特挑战。Pinecone拥有尖端的索引和搜索功能,使数据工程师和数据科学家能够构建和实施大规模的机器学习应用程序,进行有效地处理和分析高维数据。主要特点包括:

  • 全面管理的服务

  • 高度可扩展

  • 实时数据接收

  • 低延迟搜索

  • 与LangChain的集成

3.Weaviate

图片

图片

Weaviate向量数据库体系结构

Weaviate是一个开源的向量数据库。它支持存储来自工程师喜爱的ML模型的数据对象和向量嵌入,并无缝扩展到数十亿个数据对象中。Weaviate的一些关键功能是:

  • 速度:Weaviate可以在短短几毫秒内从数百万个物体中快速搜索十个最近的邻居。

  • 灵活性:使用Weaviate,可以在导入过程中向量化数据,也可以上传自己的数据,利用与OpenAI、Cohere、HuggingFace等平台集成的模块。

  • 从原型到大规模生产,Weaviate强调可扩展性、复制和安全性。

  • 超越搜索:除了快速向量搜索,Weaviate还提供推荐、总结和神经搜索框架集成。

4.Faiss

图片

图片

Faiss是Facebook创建的向量搜索开源库

Faiss是一个开源库,用于快速搜索相似性和密集向量的聚类。它包含能够在不同大小的向量集内进行搜索的算法,甚至是那些可能超过RAM容量的向量集。此外,Faiss还提供了用于评估和调整参数的辅助代码。

虽然它主要是用C++编写的,但完全支持Python/NumPy集成,一些关键算法也可用于GPU执行。Faiss的主要开发由Meta的基础人工智能研究小组负责。

5.Qdrant

图片

图片

Qdrant向量数据库

Qdrant是一个向量数据库,也是进行向量相似性搜索的工具。它作为API服务运行,能够搜索最接近的高维向量。使用Qdrant,可以将嵌入或神经网络编码器转换为用于匹配、搜索、推荐等任务的综合应用程序。以下是Qdrant的一些关键功能:

  • 通用API:为各种语言提供OpenAPI v3规范和现成的客户端。

  • 速度和精度:使用自定义HNSW算法进行快速准确的搜索。

  • 高级过滤:允许根据相关矢量有效载荷进行结果过滤。

  • 多样化的数据类型:支持字符串匹配、数值范围、地理位置等。

  • 可扩展性:具有水平扩展功能的云原生设计。

  • 效率内置Rust,通过动态查询规划优化资源使用。

### 构建用于大规模机器学习模型训练的向量数据库系统 #### 向量表示(Embeddings) 在构建向量数据库之前,了解向量表示至关重要。向量表示是一种将数据转换成数值型向量的技术,这些向量能够捕捉到原始数据中的语义信息。对于文本、图像或其他形式的数据,通过预训练的语言模型或自定义编码器将其映射至多维空间中的一点。 #### 设计向量数据库架构 设计合理的向量数据库架构是成功实施的关键一步。考虑到性能优化以及未来可能面临的扩展需求,在规划初期就应考虑如下因素: - **存储效率**:选择合适的索引结构以提高查询速度并减少磁盘占用。 - **可伸缩性**:支持水平分区(sharding),使得随着数据集的增长仍能保持高效运作。 - **兼容性**:确保所选解决方案易于与其他组件集成,特别是当涉及到流处理平台时更为重要。 #### 技术栈的选择 针对不同应用场景和技术背景下的团队偏好,存在多种可行的技术组合方案可供选用。以下是几种常见的搭配方式之一: - 使用 Faiss 或 Annoy 实现高效的近似近邻搜索算法; - 结合 Milvus 提供全面管理接口的同时享受其内置优化措施带来的便利; - 利用 Redis Modules 扩展传统键值对存储引擎的功能边界,满足特定业务场景的要求; ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection # 创建连接 connections.connect("default", host="localhost", port="19530") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=768) ] schema = CollectionSchema(fields) collection_name = "example_collection" milvus_collection = Collection(name=collection_name, schema=schema) data_to_insert = [[i for i in range(10)], [[float(j) for j in range(768)] for _ in range(10)]] milvus_collection.insert(data_to_insert) ``` 上述代码展示了如何利用 `pymilvus` 库创建一个名为 `example_collection` 的集合,并插入一些测试性的嵌入式数据样本[^1]。 #### 数据加载与预处理 准备高质量的输入数据集同样不可忽视。这不仅限于收集足够的实例数量,还包括清洗噪声、标注类别标签等工作。此外,还需注意标准化特征尺度,以便更好地适应后续操作流程的需求。 #### 模型训练过程中的交互机制 为了让大型语言模型(LLM)有效地访问外部知识源——即本案例中的向量数据库,在二者之间建立有效的沟通渠道必不可少。一种常见做法是在每次请求前动态生成提示词(Prompt),引导 LLM 关注当前上下文中为重要的方面,从而实现精准的知识检索和服务提供[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python慕遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值