本文来源公众号“极市平台”,仅用于学术分享,侵权删,干货满满。
原文链接:行人、车辆、动物等ReID最新综述!武大等全面总结Transformer方法 | IJCV 2024
2024的最后一篇文章!提前祝大家跨年快乐!
2024好好再见 2025笑笑迎接 来自乐队“五月天MAYDAY”!
极市导读
研究人员对基于Transformer的Re-ID研究进行了全面回顾和深入分析,将现有工作分类为图像/视频Re-ID、数据/标注受限的Re-ID、跨模态Re-ID以及特殊Re-ID场景,提出了Transformer基线UntransReID,设计动物Re-ID的标准化基准测试,为未来Re-ID研究提供新手册。
目标重识别(Object Re-identification,简称Re-ID)旨在跨不同时间和场景识别特定对象。
近年来,基于Transformer的Re-ID改变了该领域长期由卷积神经网络(CNN)主导的格局,不断刷新性能记录,取得重大突破。
与以往基于CNN与有限目标类型的Re-ID综述不同,来自武汉大学、中山大学以及印第安纳大学的研究人员全面回顾了近年来关于Transformer在Re-ID中日益增长的应用研究,深入分析Transformer的优势所在,总结了Transformer在四个广泛研究的Re-ID方向上的应用,同时将动物加入Re-ID目标类型,揭示Transformer架构在动物Re-ID应用的巨大潜力。
论文地址:http://arxiv.org/abs/2401.06960
项目地址:https://github.com/mangye16/ReID-Survey
Transformer架构方法打破CNN架构性能记录
研究背景
Transformer以优异性能满足各种Re-ID任务的需求,提供一种强大、灵活且统一的解决方案。
研究人员将现有工作分类为基于图像/视频的Re-I