Coggle数据科学 | Kaggle知识点:TabM深度学习模型(Jane Street比赛高分模型)

本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。

原文链接:Kaggle知识点:TabM深度学习模型(Jane Street比赛高分模型)

表格数据的监督学习在工业应用中非常普遍。传统的非深度学习方法中,梯度提升决策树(GBDT)是当前的最优解决方案。

但近年来,深度学习模型在表格数据上的表现有所提升,甚至有研究表明在某些学术基准上超越了GBDT。

从实践角度来看,表格深度学习模型是否提供了明显的基线模型仍不明确。 现有文献中,新方法相对于简单MLP基线的性能提升规模和一致性并未得到充分分析。

基于以上问题,作者对现有的表格深度学习方法进行了全面评估,发现非MLP模型尚未能提供令人信服的替代方案。但通过参数高效的集成(parameter-efficient ensembling)来显著改进表格数据的MLP模型。

TabM模型基于MLP和BatchEnsemble的变体。BatchEnsemble是一种现有的技术,允许在一个模型中实现多个预测。

ICLR 2025 (审稿中)https://arxiv.org/pdf/2410.24210

TabM 模型使用

安装环境:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值