量子位 | 目标检测新SOTA,端侧实时识别,沈向洋罕见转发点赞

本文来源公众号“量子位”,仅用于学术分享,侵权删,干货满满。

原文链接:目标检测新SOTA,端侧实时识别,沈向洋罕见转发点赞

目标检测领域,迎来了新进展——

Grounding DINO 1.5,IDEA研究院团队出品,在端侧就可实现实时识别。

这一进展获得AI大佬沈向洋转发,他一般都是一年一转的节奏。

此次发布主要有两个版本:Pro和Edge。Pro版更强,Edge版更快。

它仍然保留了上一个版本Grounding DINO双编码器-单解码器结构,在此基础上通过结合更大的视觉 backbone 扩大模型尺寸,并使用超过2000万的Grounding 数据获得了丰富的语料,大幅提升了检测精度和速度,且通过Pro和Edge版本分别针对不同应用场景进行了优化。

Pro版本在大规模数据集构建和高精度需求场景中表现卓越,而Edge版本则在端侧部署中展示了其独特的优势。

这就来分别看一看。

Pro版目标检测新SOTA

Grounding DINO 1.5 Pro版本实现了当前开集目标检测SOTA水平,在图像和文本的语义理解上表现出色,能够快速、准确地根据语言提示检测和识别图像中的目标对象。

在COCO、LVIS、ODinW35和ODinW13基准测试中的零样本迁移性能对比

物体级别理解是机器和物理世界交互的感知基础,也是解决多模态大模型(VLM)幻觉问题绕不过去的基础问题。

作为当前性能最好的开集检测模型,Grounding DINO 1.5 Pro 可以帮助构建海量的具有物体级别语义信息的多模态数据,从而有效地助力多模态大模型的训练。

它可以将长文本描述中的短语与图像中的具体对象或场景精确匹配,以增强AI对视觉内容和文本之间关系的理解

另外,在其他需要处理大量复杂数据的领域,如电商、社交媒体和自动驾驶等,Grounding DINO 1.5 Pro 也具有强大应用价值。

例如,在电商领域,该模型可以帮助快速标注商品图像,优化搜索和推荐系统。在社交媒体中,该模型能自动标注用户上传的图片,提升内容审核和分类的效率。

支持行业数据微调

除此之外,Pro版还支持通过行业数据进行微调(fine tuning),以满足各行业的特定需求,从而达到更加精准的识别效果。

为了验证微调带来的提升,CVR团队在视觉领域通用的LVIS等公开数据集上进行了对比实验。

从最后两行可看出,Grounding DINO 1.5 Pro经过微调,在多个数据集上都展现出大幅的性能提升。

而在多个实际场景,也十分适配。

像在医疗领域,通过微调后的Grounding DINO 1.5 Pro可以更准确地识别医疗影像中的病灶,辅助医生进行诊断,提高诊疗效率。

在零售行业,微调后的模型能更精准地识别和分类商品,有助于库存管理和销售分析。

Edge版端侧可部署

在端侧部署方面,Grounding DINO 1.5 Edge版本通过模型结构优化,成功部署在NVIDIA Orin NX卡上,并实现了10FPS的推理速度。

图片

再者,它可以让机器人和开放环境进行交互。

图片

在自动驾驶领域,Grounding DINO 1.5 Edge未来可以在车辆上实时运行,实现高效的目标检测和环境感知,提高驾驶安全性。在智能安防中,该模型能快速处理视频监控数据,实时检测异常行为,提升安全监控的响应速度。

未来,Grounding DINO 1.5 Edge的运行速度有望提升至20到30FPS,进一步扩大其在边缘计算领域的应用范围。

论文链接:
https://arxiv.org/abs/2405.10300
项目试玩链接:
https://deepdataspace.com/playground/grounding_dino

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

### 小样本目标检测的最进展 小样本目标检测的目标是在少量标注数据的情况下实现高精度的对象识别。近年来,随着深度学习的发展,研究者提出了多种先进的方法来解决这一挑战。 #### 基于元学习的方法 元学习是一种通过模拟多个任务的学习过程来提高模型泛化能力的技术。在小样本目标检测领域,Few-Shot Object Detection via Feature Reweighting (FSOD)[^4] 是一种典型的元学习方法。该方法利用支持中的样本来调整查询中对象的权重分布,从而提升检测性能。 #### 对比学习增强的小样本检测 对比学习被广泛用于改进特征表示的质量。例如,在 FSCE 方法中,引入了一个额外的对比分支来增强感兴趣区域(Region of Interest, RoI)头部的表现力[^2]。这种方法通过最小化同类实例间的距离并最大化异类实例间距离的方式提升了模型对类别的适应能力。 #### 跨模态迁移学习 跨模态迁移学习尝试从其他域的知识中获取帮助以改善当前任务的效果。比如 Point Cloud to Image Transformation 技术可以将云转换成图像形式以便更好地应用现有的二维卷积神经网络架构进行处理[^3]。这种技术特别适用于自动驾驶场景下的三维物体检测问题。 #### YOLO系列算法的应用扩展 YOLOv5 和 YOLOX 等版本进一步提高了实时性和准确性,并且它们也可以很容易地适配到少样本环境中去[^1]。这些框架通常会结合自监督预训练策略以及细粒度的数据增广手段来缓解过拟合现象的发生。 ```python import torch from yolov5 import train if __name__ == '__main__': device = 'cuda' if torch.cuda.is_available() else 'cpu' # Define training parameters hyp = {'lr0': 0.01} # Initial learning rate (SGD=1E-2, Adam=1E-3) opt = { 'weights': None, 'cfg': './models/yolov5s.yaml', 'data': './datasets/coco128.yaml', 'epochs': 100, 'batch_size': 16, 'imgsz': 640, 'device': device} train.run(**opt) ``` 上述代码片段展示了如何使用 YOLOv5 进行定制化的训练流程设置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值