永磁同步电机矢量控制(一)————永磁同步电机的数学模型及稳态特性

1、永磁同步电机的数学模型

        在永磁同步电动机矢量控制系统中,常用的坐标系有两种:两相旋转坐标系(\tiny d-q坐标系)和两相静止坐标系(\tiny \alpha -\beta坐标系),各坐标系之间的关系如图所示,在图中永磁体产生的磁链矢量的方向和转子磁极的方向一致。

        永磁同步电机是一个非线性系统,具有多变量、强耦合的特点。我们对其分析的时候有以下假设:

  • 忽略铁芯饱和,不计涡流和磁滞损耗
  • 忽略换相过程中的电枢反应
  • 转子上无阻尼绕组,永磁体无阻尼作用
  • 定子绕组电流在气隙中只产生正弦分布的磁势,无高次谐波

按照电动机应用建模

在此理想条件下:

1.1  永磁同步电机在三相静止坐标系下定子电压方程:

 

                                                         \small \begin{bmatrix} u_{a}\\ u_{b}\\ u_{c} \end{bmatrix}=\begin{bmatrix} R_{s}&0&0\\ 0&R_{s}&0\\ 0&0&R_{s} \end{bmatrix}\begin{bmatrix} i_{a}\\ i_{b}\\ i_{c} \end{bmatrix}+\begin{bmatrix} \Psi _{a}^{'}\\ \Psi _{b}^{'}\\\Psi _{c}^{'} \end{bmatrix}

 

        式中,\tiny R_{s}为电枢电阻,\tiny \Psi _{a},\Psi _{b},\Psi _{c}分别为\tiny abc三相磁链,\tiny i_{a},i_{b},i_{c}分别为其\tiny abc三相的相电流。

1.2  三相静止坐标系下磁链方程

 

                              \small \begin{bmatrix} u_{a}\\ u_{b}\\ u_{c} \end{bmatrix}=\begin{bmatrix} L_{aa}&M_{ab}&M_{ac}\\ M_{ba}&L_{bb}&M_{bc}\\ M_{ca}&M_{cb}&L_{ac} \end{bmatrix}\begin{bmatrix} i_{a}\\ i_{b}\\ i_{c} \end{bmatrix}+\Psi _{f}\begin{bmatrix} cos\theta \\ cos\left ( \theta -\frac{2\pi }{3} \right )\\ cos\left ( \theta +\frac{2\pi }{3} \right ) \end{bmatrix}

 

        其中,\tiny L_{aa},L_{bb},L_{cc}为各相绕组自感,且\tiny L_{aa}=L_{bb}=L_{cc},式中\tiny M_{ab}等为绕组之间互感且均相等。\tiny \Psi _{f}是永磁体磁链,\tiny \theta为转子\tiny N极和\tiny a相轴线之间的夹角。

        经过\tiny CLARK\tiny PARK变换之后,得到其在\tiny dq坐标系下的数学模型:

1.3  \small dq坐标系下电压方程

 

                                          \small \begin{bmatrix} u _{d}\\ u _{q} \end{bmatrix}=\begin{bmatrix} R_{s} & -\omega _{e}L_{q}\\ \omega _{e}L_{d}& R_{s} \end{bmatrix}\begin{bmatrix} i_{d}\\ i_{q} \end{bmatrix}+\frac{\mathrm{d}}{\mathrm{d} t}\begin{bmatrix} \Psi _{d}\\ \Psi _{q} \end{bmatrix}+\begin{bmatrix} 0\\ \omega _{e}\Psi _{f} \end{bmatrix}

 

        其中,\tiny u_{d},u_{q}\tiny dq轴电压,\tiny i_{d},i_{q}\tiny dq轴电流,\tiny \Psi _{d},\Psi _{q}\tiny dq轴磁链,\tiny L_{d},L_{q}\tiny dq轴电感,\tiny \omega _{e}为转速。

1.4  \small dq坐标系下磁链方程

 

                                                              \small \begin{bmatrix} \Psi _{d}\\ \Psi _{q} \end{bmatrix}=\begin{bmatrix} L_{d} & 0\\ 0& L_{q} \end{bmatrix}\begin{bmatrix} i_{d}\\ i_{q} \end{bmatrix}+\begin{bmatrix} \Psi _{f}\\ 0 \end{bmatrix}

 

1.5  转矩方程

 

                                         \small \dpi{150} \small T_{e}=\frac{3}{2}n_{p}\left ( \Psi _{d}i_{q}-\Psi _{q}i_{d} \right )=\frac{3}{2}n_{p}\left ( \Psi _{f}i_{q}+\left ( L_{d} -L_{q}\right )i_{d}i_{q} \right )

 

        从上1.5中转矩方程可以看出,电磁转矩由两个部分组成。第一项是永磁体和定子绕组磁链之间相互作用产生,第二项则是由磁阻变化而产生的。这里我们需要区分一下凸极和隐极电机的区别,隐极电机由于\tiny L_{q}=L_{d},所以磁阻变化转矩是凸极电机特有的,我们在搭建仿真的时候也需要注意这里的电机类型。
        小结:永磁同步电机的数学模型解释了其内部构成,有助于我们设计控制策略,我们进行坐标变换和PI参数整定时都需要对其数学模型进行分析。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值