CAMEL-AI OWL部署测试

CAMEL-AI OWL部署和测试

今天测试第二个国内的Manus开源平替见github地址,OWL。之前测试了openManus见。

image-20250310193550772

1.OWL简介

OWL(Optimized Workforce Learning)是 CAMEL-AI 团队开发的开源多智能体协作框架,旨在通过优化多智能体协作实现真实世界任务的自动化。作为国内的两个Manus的开源替换之一(另一个是openManus),它支持多个智能体之间的动态协作,通过角色分配和任务分解,让智能体能够高效地完成复杂任务。OWL 具有强大的任务自动化能力,包括文件解析、代码生成、网页操作、执行终端命令、自动生成任务清单等。此外,它还引入了记忆模块,能够存储和调用过往经验,提升任务执行效率。在 GAIA 基准测试中,OWL 以 58.18 的高分位居开源框架榜首,展现出卓越的性能。技术原理上,OWL 通过动态智能体交互实现高效的任务自动化,强调智能体之间的协作模式和通信协议,并基于 CAMEL-AI 框架开发,大语言模型(如 OpenAI 兼容模型)作为智能体的核心能力。应用场景方面,OWL 可以应用于多种复杂任务的自动化,如启动 Ubuntu 容器、模拟远程办公环境、执行终端命令、文件解析、网页爬取、自动生成任务清单、报告、代码和文档、操作浏览器和执行在线搜索等。安装与配置方面,OWL 提供了详细的安装指南,支持使用 Conda 或 venv 快速搭建运行环境,开发者可以通过配置 .env 文件,接入所需的 API 服务。未来规划上,CAMEL-AI 团队计划将 OWL 与此前开发的跨平台智能体 CRAB 技术相结合,进一步提升其应用范围和能力,有望直接控制手机和电脑上的应用,实现跨平台、多设备全场景远程操作。

2.OWL部署和测试

以往都是在Linux下,这次选择在Windows下试试。

  • 创建虚环境:
conda create -n owl python=3.10
conda activate owl
  • 克隆代码
git clone https://github.com/camel-ai/owl.git
  • 安装
cd owl
pip install -e .
  • 配置环境
cp owl/.env_template .env

用记事本打开.env 文件,在其中填入 API keys (如果只使用最小的例子 (run_mini.py), 只需要配置 LLM API key (e.g., OPENAI_API_KEY).)

github的教程是针对网上的API KEY,如果是本地使用Ollama部署的LLM,参考这个

在owl目录下写一个run_ollama.py,内容如下:

from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.models import ModelFactory
from camel.types import ModelPlatformType

ollama_model = ModelFactory.create(
    model_platform=ModelPlatformType.OLLAMA,
    model_type="deepseek-r1:7b",
    url="http://localhost:11434/v1"# Optional
    model_config_dict={"temperature"0.4},
)

agent_sys_msg = "You are my agent."

agent = ChatAgent(agent_sys_msg, model=ollama_model, token_limit=4096)

# 允许用户输入消息
user_msg = input("请输入需要交给OWL的任务:")  # 用户输入消息

assistant_response = agent.step(user_msg)
print(assistant_response.msg.content)

尝试一下:

image-20250310201108844

成功调用,但是因为本地模型不能直接联网没有继续执行。试试不用本地模型,改为通义QWQ API KEY。

如果想使用更多的 CAMEL模型,参考文档

  • 运行给的例子
python owl/run.py

OWL 支持不同的 LLM backends. 可以用不同的方式调用:

# Run with Qwen model
python owl/run_qwen.py

# Run with Deepseek model
python owl/run_deepseek.py

# Run with other OpenAI-compatible models
python owl/run_openai_compatiable_model.py

如果只是运行最小版本的用例,可以:

python owl/run_mini.py
  • Web Interface
python run_app.py
image-20250310202510321

在环境变量处配置LLM API KEY就可以执行任务了。

我让它总结一下今天的AI新闻,放在Word文档里:

image-20250310203304711

实测一下,还是比较费Token的,而且如果遇到网站反爬之类的还会有问题,Manus没有用过没有发言权。至少对比了openManus和OWL,感觉这个是Agent的曙光,但是真的使用,速度慢,费用较高,还有很大提升改进空间,个人觉得至少在目前,全自动可能还不太好用,人机协同会更好。

### CAMEL AI 项目概述 CAMEL 是一项旨在探索大型语言模型社会中“心智”交流的开源研究计划[^1]。该项目通过构建通信代理(Communicative Agents)来模拟人类之间的交互过程,从而促进不同人工智能系统间的协同工作。其目标在于创建一种能够理解复杂指令并执行多样化任务的人工智能架构。 #### 核心功能与特性 CAMEL 提供了一个全面的框架用于开发和训练多智能体系统[^2]。以下是该系统的几个主要特点: - **模块化设计**:项目结构清晰,分为多个核心组件,包括但不限于角色定义、对话管理以及策略优化等部分。 - **社区驱动发展**:来自超过二十所国际知名大学及企业机构的研究人员共同维护此项目,持续更新和完善相关资源。 - **衍生应用广泛**:基于 CAMEL 的理念和技术已孵化出 OWL 和 CRAB 等子项目,这些成果进一步验证了基础理论的实际可行性。 #### 安装与配置指导 为了顺利启动 CAMEL 平台,在本地环境中完成必要的准备工作至关重要[^3]。具体步骤如下所示(注意这里仅作为概括说明而非详尽手册,请参照官方文档获取最新版本的操作流程): 1. 克隆远程存储库至个人电脑上; ```bash git clone https://gitcode.com/gh_mirrors/ca/camel.git cd camel ``` 2. 创建虚拟隔离空间以便更好地控制第三方包版本冲突风险; ```bash python -m venv env_camel source ./env_camel/bin/activate pip install --upgrade pip setuptools wheel ``` 3. 执行依赖项安装命令加载所需软件集合; ```bash pip install -r requirements.txt ``` 4. 配置特定参数选项满足个性化需求前先阅读对应章节解释材料; 以上操作完成后即可运行预设实例体验基本功能演示效果啦! ```python from camel.agents import RolePlaying, TaskPlannerAgent, CriticAgent task_planner_agent = TaskPlannerAgent() critic_agent = CriticAgent() role_playing_session = RolePlaying( assistant_role_name="Math Tutor", user_role_name="Student" ) print(role_playing_session.init_chat()) ``` 上述代码片段展示了如何初始化一个简单的角色扮演会话场景——其中一方担任数学导师而另一方则表现为求知欲旺盛的学生形象。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值