【调剂】中国农业科学院农业环境与可持续发展研究所2025年硕士研究生调剂公告

公众号【计算机与软件考研】每天都会发布最新的计算机考研调剂信息!

点击公众号界面右下角的调剂信息或者公众号回复“调剂”是计算机/软件等专业的所有调剂信息集合,会一直更新的。

调剂工作是硕士研究生招生录取工作的重要环节,是满足考生多元志愿选择、保障考生权益的重要渠道。根据教育部、北京市教委及研究生院有关文件精神,结合我所实际,调剂工作公告如下:

一、调剂基本原则

(一)坚持“服务考生,择优选拔”的原则,调剂考生的复试形式、内容、程序、录取标准与第一志愿考生相同。

(二)所有调剂考生均需通过教育部“全国硕士生招生调剂服务系统”进行申请并接收确认有关通知。

二、调剂基本条件

(一)调剂考生初试成绩须符合第一志愿报考专业在一区的全国初试成绩基本要求,并符合调入专业的报考条件。

(二)原则上,调剂考生第一志愿专业与调入专业相同相近,或初试科目与调入专业初试科目相同相近。我所拟接收调剂的专业范围和学术性要求如下(下表中涉及调剂专业的学习方式均为全日制):

拟接收调剂学科

专业名称及代码

调剂考生第一志愿专业名称及代码

总分

单科(满分

=100 分)

单科(满

分>100 分)

考试科目要求

拟调剂名额

大气科学(070600)

大气科学(0706)、自然地理学(070501)、遥感科学与技术(0787)、农业资源与环境(0903)、计算机科学与技术(0812)

300

40

62

统考数学或化学

3

气象(075100)

气象(0751)、大气科学(0706)、自然地理学(070501)、农业资源与环境(0903)、计算机科学与技术(0812)

290

40

62

统考数学或化学

7

生态学(071300)

生态学(0713)、微生物学(071005)、农业资源与环境 (0903)、环境科学(0971)

300

40

62

统考数学或化学

2

生物物理学(071011)

生物学(0710)、化学(0703)、药学(0780)、植物保护(0904)

300

40

62

-

2

环境工程(083002)

环境科学与工程(0830)、农业工程(0828)

290

40

56

统考数学或化学

1

环境工程(085701)

资源与环境(0857)、环境科学与工程(0830)、农业工程(0828)、农业资源与环境(0903)

275

40

56

-

5

农业生物环境与能源工程(082803)

农业工程(0828)、环境科学与工程(0830)、资源与环境(0857)、能源动力(0858)

290

40

56

统考数学或化学

3

土壤学(090301)

环境科学与工程(0971)、微生物学(071005)、农业资源与环境(0903)、生态学(0713)

300

40

62

统考数学或化学

2

资源利用与植物保护(095132)

资源利用与植物保护(095132)、农业资源与环境 (0903)、生态学(0713)、农业工程(0828)、水利工程(0815)

290

38

62

-

10(可接收少民计划)

(三)第一志愿报考工学照顾专业的考生若调剂出本类照顾专业,其初试成绩必须达到调入地区该照顾专业所在学科门类的全国初试成绩基本要求。第一志愿报考非照顾专业的考生若调入照顾专业,其初试成绩必须符合调入地区对应的非照顾专业学科门类的全国初试成绩基本要求。工学照顾专业之间调剂按照顾专业内部调剂政策执行。

(四)报考“少数民族高层次骨干人才计划”的考生不得调剂到该计划以外录取,未报考的不得调剂入该计划录取。我所部分专业可接收少数民族高层次骨干人才计划调剂考生,进入复试的初试成绩要求与相关专业进入复试要求一致。

(五)教育部调剂政策中规定的其他条件及要求。

(六)调剂复试时间另行通知。

三、调剂基本程序

(一)调剂意向采集:教育部“全国硕士生招生调剂服务系统”中调剂意向采集模块于328日开通,最终调剂名额以教育部调剂系统正式开通后为准。

(二)填写志愿。教育部“全国硕士生招生调剂服务系统”48日正式开通后,考生可登录调剂系统查看我所公布的各专业生源缺额情况,并及时填报相关志愿信息,接收复试通知。

(三)考生筛选。研究所将审核调剂生源信息,依据“择优录取”原则,向符合复试要求的调剂考生发送复试通知,考生应于收到复试通知后的规定时间内进行确认,否则视为放弃。

(四)接受复试。初选合格的考生,须登录调剂系统接收并确认培养单位的复试通知,接受复试通知的考生须按时参加复试。

(五)确认拟录取。复试结束后,拟录取的考生须及时登录调剂系统接收并确认待录取通知。

四、联系方式

  人:彭老师

联系电话:010-82105338

电子邮箱:hfszs@caas.cn

本办法由研究所招生工作领导组负责解释。如教育部、北京市教委及研究生院等有最新政策要求,以最新政策要求为准。

信息来源网址:

http://www.ieda.org.cn/xwzx/tzgg/36ace76a09234588acd1bf3ca4448bba.htm

我每年都会整理计算机考研的调剂信息集合,而且是最全的:

18考研】计算机/软件等专业调剂信息集合!

【19考研】计算机/软件等专业调剂信息集合!

【20考研】计算机/软件等专业调剂信息集合!

【21考研】计算机/软件等专业调剂信息集合!

【22考研】计算机/软件等专业调剂信息集合!

【23考研】计算机/软件等专业调剂信息集合!

【24考研】计算机/软件等专业调剂信息集合!

您还可以在以下平台找到我们


你点的每个在看,我都认真当成了喜欢

<think>好的,用户想了解RCAB模块在图像超分辨率任务中的作用和原理。首先,我需要回忆一下RCAB的相关知识。RCAB全称是Residual Channel Attention Block,应该是在残差块的基础上加入了通道注意力机制。这通常用于提升超分辨率模型的性能。 记得残差块(Residual Block)在ResNet中被广泛使用,通过跳跃连接缓解梯度消失的问题,帮助训练更深的网络。而通道注意力机制,比如SENet中的Squeeze-and-Excitation模块,能够自动学习各个通道的重要性,增强有用的特征,抑制不重要的。RCAB可能结合了这两者。 接下来,需要确认RCAB的具体结构。根据常见的设计,RCAB可能包含多个卷积层,然后是通道注意力模块,最后通过残差连接相加。这样可以在提取特征的同时,动态调整各通道的权重,让网络更关注重要的信息。 在超分辨率任务中,RCAB的作用应该是增强高频细节的恢复,比如边缘和纹理,这对于提升图像清晰度至关重要。同时,通道注意力机制能有效利用通道间的依赖关系,优化特征表达,从而提升重建质量。 应用场景方面,RCAB可能被用于如EDSR、RCAN等超分辨率模型中。这些模型通常堆叠多个RCAB模块,通过深层的网络结构逐步恢复高分辨率图像。特别是在处理大倍数超分辨率(如4x、8x)时,RCAB能帮助保持细节,减少模糊。 还需要考虑RCAB的优势。比如,通过残差学习简化了优化过程,而通道注意力则增强了特征的区分能力。这可能使得模型在计算资源有限的情况下仍能保持高效,同时提升性能。 需要验证这些信息是否正确。参考用户提供的资料,引用[1]提到多尺度卷积和特征融合,引用[2]提到信息交互和注意力机制。虽然没有直接提到RCAB,但通道注意力属于注意力机制的一种,符合引用中的信息。因此可以推断RCAB的应用场景这些模块类似,用于特征提取和优化。 总结来说,RCAB的作用是通过残差结构和通道注意力机制,有效提取并优化特征,提升超分辨率重建的质量。应用场景包括各种基于深度学习的超分辨率模型,特别是在需要恢复细节和高效利用特征时。</think>RCAB(Residual Channel Attention Block)模块在图像超分辨率任务中主要用于**增强特征表达能力并优化高频细节恢复**,其核心原理是通过残差学习通道注意力机制的结合,动态调整特征通道的重要性权重。 ### 作用原理分步说明: 1. **残差学习框架** RCAB基于残差块(Residual Block)设计,包含两个卷积层和激活函数,通过跳跃连接(Skip Connection)将输入输出相加。这种方式缓解了梯度消失问题,支持更深的网络训练,公式为: $$F(x) = H(x) + x$$ 其中$H(x)$为残差函数,$x$为输入特征。 2. **通道注意力机制** 在残差块后引入通道注意力模块(Channel Attention Module),通过全局平均池化(Global Average Pooling)统计通道特征,并利用全连接层生成通道权重: $$w_c = \sigma(W_2 \cdot \delta(W_1 \cdot \text{GAP}(x)))$$ 其中$\sigma$为Sigmoid函数,$\delta$为ReLU,$W_1$和$W_2$为全连接层参数。最终输出特征为各通道加权后的结果: $$x' = w_c \cdot x$$ 该机制使网络自动关注对重建更重要的特征通道[^1]。 3. **多尺度特征融合** RCAB常多尺度特征提取模块结合(如引用[1]中提到的多尺度卷积层),通过不同感受野的卷积核捕获低频和高频信息,再利用通道注意力筛选关键特征,减少冗余计算,提升重建效率。 ### 应用场景 - **单图像超分辨率(SISR)**:如RCAN(Residual Channel Attention Networks)模型,通过堆叠多个RCAB模块恢复高分辨率图像的细节[^2]。 - **多模态超分辨率融合**:在红外可见光图像融合任务中,RCAB用于增强跨模态特征的表征能力,保留边缘和纹理信息[^1]。 - **轻量超分辨率网络**:由于通道注意力可抑制无效特征,RCAB在减少计算量的同时保持性能,适用于移动端部署。 ### 示例模型结构 ```python class RCAB(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, 3, padding=1) self.conv2 = nn.Conv2d(channels, channels, 3, padding=1) self.ca = ChannelAttention(channels) # 通道注意力模块 def forward(self, x): res = self.conv1(x) res = F.relu(res) res = self.conv2(res) res = self.ca(res) # 通道加权 return x + res # 残差连接 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值