Ollama命令的使用详解

这里是对 Ollama 命令的详细使用说明,包括常见命令、参数解释和示例,帮助大家全面掌握 Ollama 的使用。


1. Ollama简介

Ollama 是一个本地LLM(大语言模型)运行工具,它允许你在本地设备上拉取、运行和管理AI模型(如LLaMA、Mistral、Gemma等)。Ollama支持CLI操作,非常适合开发者和AI爱好者使用。


2. 基本命令列表

命令作用
ollama pull拉取模型
ollama run运行模型交互
ollama create创建自定义模型
ollama list查看本地模型列表
ollama show查看模型详细信息
ollama push推送自定义模型到Ollama Hub(或其他仓库)
ollama cp复制/重命名模型
ollama rm删除本地模型
ollama serve以服务形式运行(搭建API)
ollama pull从远程仓库拉取模型
ollama system查看系统资源使用情况

3. 命令详细说明与示例

3.1 拉取模型(pull)

从官方仓库或自定义仓库拉取模型。

ollama pull llama2

可指定具体模型版本:

ollama pull llama2:7b

从其他仓库地址拉取:

OLLAMA_ORIGIN=https://your-custom-registry.com ollama pull my-custom-model

3.2 运行模型(run)

启动指定模型,进入交互对话模式。

ollama run llama2

直接运行并指定prompt:

ollama run llama2 -p "帮我写一个Python冒泡排序。"

注意

  • 可通过-p传入prompt。
  • 可以通过-m指定模型,方便shell脚本调用。

3.3 创建自定义模型(create)

根据自定义Modelfile创建新模型。

Modelfile(示例):

FROM llama2:7b
SYSTEM "You are a helpful AI assistant."

命令:

ollama create my-llama2 -f ./Modelfile

3.4 查看本地模型列表(list)

ollama list

输出示例:

NAME              SIZE       MODIFIED
llama2            3.8 GB     2 days ago
mistral           4.2 GB     5 hours ago

3.5 查看模型详细信息(show)

ollama show llama2

可查看模型的元信息,如系统消息、模板等。


3.6 推送自定义模型(push)

推送本地自定义模型到远程仓库(如Ollama Hub)。

ollama push my-llama2

可设置环境变量OLLAMA_ORIGIN来推送到自定义仓库。


3.7 复制模型(cp)

ollama cp my-llama2 my-llama2-backup

相当于模型的重命名和备份。


3.8 删除模型(rm)

ollama rm my-llama2

3.9 作为API服务运行(serve)

ollama serve

默认监听:

http://localhost:11434

可以接受HTTP API请求。

示例:

curl -X POST http://localhost:11434/api/generate -d '{
    "model": "llama2",
    "prompt": "Explain what is AI."
}'

3.10 系统信息查看(system)

查看Ollama后台运行的系统资源信息,如显存、CPU等:

ollama system

输出示例:

Version: v0.1.32
Models: 5
Disk usage: 28 GB
GPU: RTX 3090, 24 GB

4. 常用参数说明

参数说明示例
-m指定模型-m llama2:7b
-p直接传入prompt-p "写一个hello world程序"
-f指定Modelfile路径-f ./Modelfile
-t设定生成温度-t 0.7
--stream开启流式输出--stream
--no-cache禁用缓存--no-cache

5. 配置环境变量

可在~/.ollama/config.toml中设置一些全局参数,比如镜像源或缓存目录:

origin = "https://custom-ollama-registry.com"
cache_dir = "/path/to/cache"

6. 结合 Docker 使用(可选)

你也可以通过Docker运行Ollama:

拉取Ollama Docker镜像

docker pull ollama/ollama

启动容器

docker run -d --name ollama \
  -v ollama_data:/root/.ollama \
  -p 11434:11434 \
  ollama/ollama

进入容器

docker exec -it ollama bash

7. API调用示例

Ollama内置API服务,结合前端或其他程序调用:

获取模型列表

curl http://localhost:11434/api/tags

生成内容

curl -X POST http://localhost:11434/api/generate -d '{
    "model": "llama2",
    "prompt": "什么是机器学习?",
    "stream": false
}'

8. 总结

功能命令
拉取模型ollama pull <model>
运行模型ollama run <model>
自定义模型ollama create <name> -f <Modelfile>
查看模型ollama list, ollama show
删除模型ollama rm <name>
服务模式ollama serve
查看系统资源ollama system
API调用curl -X POST http://localhost:11434/api/generate

### Ollama命令执行流程详解 当运行`ollama run example "What is your favourite condiment?"`时,此命令会触发一系列内部操作以确保模型能够接收输入并返回预期的结果[^1]。 #### 命令解析阶段 首先,CLI工具接收到用户的指令后会对传入参数进行分析。对于上述例子而言,“example”代表所使用的预训练模型名称;而“What is your favourite condiment?”则是提供给AI处理的具体查询字符串。 #### 模型加载准备 接着,程序检查指定的模型是否已经存在于本地缓存中。如果不存在,则通过网络请求从远程服务器下载对应的权重文件和其他必要的配置资源,并将其存储于系统的适当位置以便后续调用。 #### 输入数据预处理 之后,针对用户给出的文字内容实施标准化转换,比如去除多余空白字符、调整大小写形式等措施,从而使得不同格式的数据可以被统一处理。这一步骤有助于提高预测准确性以及减少潜在错误的发生概率。 #### 推理计算环节 完成前期准备工作以后,实际推理过程随即启动。此时,先前选定好的神经网络架构将会依据当前环境下的硬件条件自动选择最优路径来进行前向传播运算,在这个过程中间层节点逐步激活直至最终得出输出结果。 #### 输出展示部分 最后,经过推理解析得到的回答会被整理成易于人类阅读的形式反馈给终端用户。“I love mayonnaise!”这样的语句就是典型的回应实例之一。 ```bash $ ollama run example "What is your favourite condiment?" I love mayonnaise! ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

匹马夕阳

打码不易,请多多支持,感谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值