机器学习在商用机器人的应用_使用机器学习技术改善您的移动应用程序

机器学习在商用机器人的应用

It’s an incredible accomplishment when you consider the way that changes requested an express order from designers for gadgets to execute a particular activity. At the point when this was the standard, software engineers needed to estimate and record for each conceivable situation (and this was a fantastic test).

当您考虑更改方式要求设计师向小工具执行特定活动的明确命令时,这是令人难以置信的成就。 在这是标准的时候,软件工程师需要针对每种可能的情况进行估计和记录(这是一个了不起的测试)。

Be that as it may, with ML in portable applications, we have removed the speculating game from the condition. It can likewise upgrade User Experience (UX) by understanding client conduct. So you can wager that ML in versatile won’t be restricted to voice associates and chatbots.

即便如此,对于可移植应用中的ML,我们已从这种情况中消除了猜测游戏。 它同样可以通过了解客户行为来升级用户体验(UX)。 因此,您可以打赌,通用语言中的ML不仅限于语音助手和聊天机器人。

So how are versatile application designers utilizing ML in their applications? How about we investigate.

那么,多才多艺的应用程序设计师如何在他们的应用程序中使用ML? 我们如何调查。

增强高级搜索功能 (Empowering Advanced Search Functionality)

To convey exceptionally customized in-application encounters, AI can be joined into the hunting capacity to give increasingly instinctive and relevant outcomes. By gaining from client conduct, ML calculations can organize and order results dependent on individual inclinations.

为了传达特别定制的应用程序内遭遇,可以将AI加入狩猎能力中,以提供越来越高的本能和相关结果。 通过从客户行为中获得收益,机器学习计算可以根据个人喜好组织和排序结果。

Versatile applications today are now well-prepared to gather and examine information like client seek chronicles. So this data can be utilized alongside conduct information to rank list items arranged by inclination.

如今,多种用途的应用程序已经做好了充分的准备,可以收集和检查信息,例如客户寻求纪事。 因此,可以将这些数据与行为信息一起用于对按倾斜度排列的列表项进行排名。

We would already be able to see this in real life on the Reddit stage. As indicated by Nick Caldwell, previous Vice President of Engineering at Reddit and momentum Chief Product Office at Looker, “Reddit depends vigorously on substance revelation… As Reddit has developed, so have our networks’ desires for the experience we give, and improving our inquiry stage will enable us to address a long-lasting client torment point in a significant manner.”

我们已经可以在Reddit阶段在现实生活中看到这一点。 正如Reddit之前的工程副总裁兼Looker的动力总产品办公室的Nick Caldwell所指出的那样,“ Reddit强烈依赖于物质启示……随着Reddit的发展,我们的网络对我们提供的经验的渴望也不断提高,并改善了我们的查询阶段将使我们能够以重大方式解决长期存在的客户折磨问题。”

帮助最终用户削减成本 (Helping End-Users Cut Costs)

Simulated intelligence and ML calculations can likewise work couple to help the end-client accomplish a specific objective. For instance, the startup Ontrack (situated in Madrid, Spain) use shrewd calculations to help haulage firms in the UK better arrangement their conveyance courses and cut fuel costs.

模拟的智能和ML计算同样可以帮助最终客户实现特定目标。 例如,初创公司Ontrack(位于西班牙马德里)使用精明的计算方法来帮助英国的运输公司更好地安排运输路线并降低燃料成本。

At whatever point a client jumps on the application, they can quickly discover costs on shipments and recognize the most productive conveyance courses. Ontrack has likewise made it a stride further by settling on task choices for the driver’s sake, counteracting under-filled trucks from blocking streets, and connecting related shipments together.

无论客户选择哪种应用程序,他们都可以快速发现运输成本并识别出最具生产力的运输课程。 通过为驾驶员着手确定任务选择,阻止装满卡车的卡车免于堵塞街道,以及将相关的货物连接在一起,Ontrack也进一步迈出了一大步。

As indicated by the organization, this methodology can help diminish void miles (where a truck doesn’t have a heap) by as much as 25%. Obviously, the application has grabbed the eye of any semblance of Alcampo, P&G and Decathlon who need to use this innovation to computerize the arranging and the board of their customary shipments and conveyances.

正如该组织指出的那样,这种方法可以帮助将无效里程(卡车没有堆放的地方)减少多达25%。 显然,该应用程序吸引了Alcampo,P&G和Decathlon的任何相似之处,他们需要使用此创新技术来将其常规装运和运输的安排和板式计算机化。

As per John Maliki, Company Director of Jonson Transport, “my armada right currently comprises of five vehicles, which are light products vehicles, and a few vans. It must the point where Ontrack is about 60% of my record now, absolutely in light of the fact that we confide in them.”

根据强森运输公司董事约翰·马利基(John Maliki)所说,“我的无敌舰队目前包括五辆轻型产品车和几辆货车。 绝对要考虑到我们相信他们的事实,Ontrack现在约占我唱片的60%。”

A similar thought can likewise be connected to travel applications. In the event that we take Mezi (as of late procured by American Express), for instance, ML calculations are utilized to enable clients to design their voyages or even change it part of the way through in the event that they need to diminish their costs. In this situation, the application will promptly look for the most economical travel choices and lodgings.

类似的想法也可以与旅行应用程序联系起来。 例如,在我们使用Mezi(美国运通最近采购)的情况下,可以使用ML计算来使客户设计航程,甚至在需要减少成本的情况下更改航程的一部分。 在这种情况下,应用程序将立即寻找最经济的旅行选择和住宿。

The outcomes will be founded on individual inclinations and past conduct. As you can envision, the client commitment with an application as such guarantees the conveyance of prevalent customized travel encounters.

结果将基于个人倾向和过去的行为。 如您所料,客户对应用程序的承诺保证了常见定制旅行的传递。

改善安全协议 (Improving Security Protocols)

In a time where the requirement for security is fundamental, AI can likewise be utilized to upgrade and guarantee the validation of utilization. For instance, applications can utilize sound, video, and voice to validate clients by coordinating it with their biometric information (like their unique mark or face).

在对安全性至关重要的时代,可以同样地利用AI来升级并保证使用的有效性。 例如,应用程序可以通过将声音,视频和语音与他们的生物特征信息(例如其独特的标记或面Kong)进行协调来验证客户。

This innovation can likewise be empowered to decide to get to rights for every individual client. On the off chance that we take BioID and ZoOm Login, for instance, you can improve security and UX in the meantime by utilizing their selfie style ultra-secure face validation framework.

同样,这项创新也可以授权为每个客户争取权利。 例如,在利用BioID和ZoOm Login的情况下,您可以利用它们的自拍样式超安全人脸验证框架来同时提高安全性和UX。

As passwords become increasingly entangled and inadequate, we will presumably observe this advancement sore in the months ahead. It’s not hard to predict as iPhone X previously acquainted Face ID with the world through its advanced TrueDepth camera framework (which incorporates a spot projector, an infrared camera, and an IR illuminator).

随着密码变得越来越纠结和不足,我们可能会在接下来的几个月中看到这种进展。 不难预测,因为iPhone X之前通过其先进的TrueDepth相机框架(集成了点投影仪,红外相机和红外照明器)使Face ID熟悉了整个世界。

Facial acknowledgment frameworks use more than 30,000 (undetectable) infrared indicates and spot designs make a scientific model of the face. As we age, ML kicks in to adjust to the physical changes in our appearance after some time.

面部确认框架使用了30,000多个(无法检测到的)红外指示,并且斑点设计可以构成人脸的科学模型。 随着年龄的增长,ML会适应一段时间后外观的物理变化。

ML can likewise take part in constant observing of the application to recognize and square suspicious exercises. While customary security conventions can just shield the application from known dangers, ML can verify clients from beforehand unidentified malware and ransomware assaults progressively.

ML同样可以不断观察应用程序,以识别并消除可疑活动。 尽管惯用的安全约定只能使应用程序免受已知危险的侵害,但ML可以逐步验证客户端免受事先未识别的恶意软件和勒索软件攻击。

升级内置翻译 (Upgrading Built-In Translation)

We can’t deny that the world is quickly decreasing. So in case, you’re a startup contemplating building a portable application, having a worldwide mentality can go far in drawing in funding.

我们不能否认世界正在Swift减少。 因此,以防万一,您是一家正在考虑构建便携式应用程序的初创公司,具有全球意识的公司可以在筹集资金方面大有作为。

With ML, designers would now be able to incorporate an interpreter that can perceive discourse progressively. This implies your clients (or clients) around the globe can undoubtedly utilize your application while never captivating an outsider interpreter.

借助ML,设计人员现在将能够加入可以逐步感知话语的口译员。 这意味着您的全球客户(或多个客户)无疑可以利用您的应用程序,而不会迷住外部解释器。

In the event that you take Airbnb, for instance, appointments interface hosts and visitors who talk in excess of 25 distinct dialects once a day. At this moment, the organization utilizes Cloud Translation API to interpret postings, discussions, and surveys between its clients.

例如,如果您使用Airbnb,约会约会的主持人和访问者每天都会进行25种以上不同方言的交谈。 目前,该组织利用Cloud Translation API来解释其客户之间的发布,讨论和调查。

The organization has additionally improved its visit application by utilizing Azar to use the Cloud Speech API and Cloud Translation API to interpret sound collaborations between the two gatherings.

该组织还利用Azar使用Cloud Speech API和Cloud Translation API来解释两次聚会之间的声音合作,从而进一步改进了其访问应用程序。

ML advancements will develop in noticeable quality in the portable application world as UX turns into the key differentiator that keeps brands important. Nonetheless, it will set aside some effort for these applications to learn client inclinations and adjust in like manner.

随着UX成为保持品牌重要性的关键差异因素,ML的进步将在便携式应用程序世界中以显着的质量发展。 尽管如此,它将为这些应用程序留出一些精力来学习客户端倾向并以类似方式进行调整。

翻译自: https://habr.com/en/post/455152/

机器学习在商用机器人的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值