串联RLC电路的震荡
其中阻尼系数 a = R 2 L a = \frac {R}{2L} a=2LR
谐振角频率 ω 0 = 1 L C \omega_0 = \frac{1}{\sqrt{LC}} ω0=LC1
过阻尼的情况这里不做深入讨论
欠阻尼
在 $ a < \omega_0 $ 时,即欠阻尼时,满足下面的公式。其中$\omega_d =\sqrt{\omega_0^2 - a^2} $ 是电路的衰减震荡角频率
u
c
(
t
)
=
U
0
ω
d
e
−
a
t
(
ω
d
c
o
s
(
ω
d
t
)
+
a
s
i
n
t
(
ω
d
t
)
)
(
t
≥
0
)
u_c(t) = \frac{U_0}{\omega_d}e^{-at}( {\omega_d cos(\omega_d t)} +{asint(\omega_d t)}\big) \qquad (t\geq 0)
uc(t)=ωdU0e−at(ωdcos(ωdt)+asint(ωdt))(t≥0)
这里的
a
a
a 有点类似与$ \frac{1}{\tau}$
临界阻尼
当 $ a = \omega_0 $ 时,即临界阻尼时
u
c
(
t
)
=
U
0
(
1
+
a
t
)
e
−
a
t
(
t
≥
0
)
u_c(t) = U_0(1+at)e^{-at} \qquad (t\geq 0)
uc(t)=U0(1+at)e−at(t≥0)
可是知道了这点有什么用呢?
毛刺与上升时间
我们搭建这样一个电路
在遇到上升沿信号时,你会看到电容两端电压会呈现这样的波形:
这是不是很像你在用示波器观察高速数字信号上升沿的波形,你是不是也曾因为毛刺而导致的误触发而苦恼?这主要是由于电路中的寄生电容和寄生电感形成了类似与上面的RLC震荡电路而导致的。
当然在线路上串联一个电阻就可以改善这种情况,那该串联多大的电阻呢?如果串联大了,波形的上升时间太长,信号速度就不够;如果串联太小,波形的毛刺还会存在。
通过尝试不同的阻值,我们得到下面的图
通过上图可知,临界阻尼状态,是没有毛刺的情况下,上升时间最短的状态,所以我们要尽量让电路处于临界阻尼。通过上面的公式得知,我们让 R = 2 L C R = 2 \sqrt{\frac{L}{C}} R=2CL 即可达到临界阻尼
并联RLC电路的震荡
并联电路的很多东西可以类比串联电路,不过列写的是电流的波形。
其中阻尼系数 a = 1 2 R C a = \frac {1}{2RC} a=2RC1
谐振角频率 ω 0 = 1 L C \omega_0 = \frac{1}{\sqrt{LC}} ω0=LC1
需要注意的是,在串联电路里对电容求 τ \tau τ ,结果是无穷大,所以阻尼系数用LC表示,
并联电路里对电感求 τ \tau τ ,结果是无穷大,所以阻尼系数用RC表示。
通过波形计算谐振角频率 ω 0 \omega_0 ω0 和阻尼系数 a a a
可是在实际电路中,我们往往无法求得电路的寄生电感和寄生电容,那我们如何知道电路的 ω 0 \omega_0 ω0 和 a a a 呢?
通过下面一个例子来带大家了解一下。
假如有如下的波形
我们先通过计算两个波峰的时间差来计算角频率 ω d \omega_d ωd
然后再分别测量两个峰与稳定后电平的电压差。
将两个电压差相除即可得到 e a Δ t e^{a\Delta t} eaΔt ,其中 Δ t \Delta t Δt 是两个峰的时间差。然后求对数,再除 $ \Delta t$ 得到 a a a 。
有了 ω d \omega_d ωd 和 a a a 就可以求得 $ \omega_0$ ,但这样仍然不能求出 R、L、C。但我们可以稍微增加一点电阻,再测量一次。正常情况下, $ \omega_0$ 基本不变,而 a a a 变大,通过两次求得的 a a a 做比,即可推算出大概要加多大电阻才可以达到临界阻值。
当然,这个方法只是理论上能算出来,真实情况下只能大概推断出所需阻值。实操中的很多问题,比如计算时省略小数带来的误差,还有真实电阻本身带来的寄生电感和寄生电容,仪表测量带来的误差,都会导致计算出现偏差。
当然,也别光对着电阻值使劲,也可以通过改善走线来减少寄生电容和寄生电感,也可以达到目的
电阻本身带来的寄生电感和寄生电容,仪表测量带来的误差,都会导致计算出现偏差。
当然,也别光对着电阻值使劲,也可以通过改善走线来减少寄生电容和寄生电感,也可以达到目的