硬件简单基础

本文详细介绍了单片机外围电路设计和信号传输的不同类型,包括单端信号、差分信号及其优缺点。探讨了信号的滤波,如串联谐振、并联谐振、高通滤波器和低通滤波器,以及电容在滤波、耦合、降压等方面的作用。此外,还讨论了电容的电气特性,如共模信号和差模信号,以及在电路设计中防止自激振荡和实现电气隔离的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

容抗公式:XC=1/ωC=1/(2πfC) 感抗公式:XL = ωL = 2πfL
计算频率:f=1/2πRC ;计算阻抗:x=1/2πfC
谐振会引起空载电压小于带载电压(获得更大的电压电流),产生过电压。
电容的电压相位滞后电流90°;电感的电流相位滞后电压90°
详情可看: https://zhuanlan.zhihu.com/p/144174884
一、
1、电感(RL电路)
电感会防止电流的突变,使其变化平缓。电感越大,电流变化曲线越平缓。当电感充满电时,开关打向右侧,若电阻小于140,则会使电压大小变小,电流变化变缓(电阻小会减小电流的损耗);若电阻大于140,电流变化剧烈(电阻大增大电流的损耗)
在这里插入图片描述
在这里插入图片描述
2、电容(RC电路)
电容会防止电压的突变,使电压变化平缓。电容越大,会使电压变化越小。电阻变大变小只会改变电流的大小,对电压变化无影响。
在这里插入图片描述
在这里插入图片描述
3、LRC电路
分为欠阻尼、过阻尼、零阻尼、临界阻尼这四个状态。会产生谐振,欠阻尼时,由于电阻的作用,会消耗能量,所以会衰减震荡(主要是依靠电阻的大小来控制),处于该状态时,电感给电容充电,直到电感的电流为0,此时电容的电压达到最大值,电容开始放电给电感充电,直到电容的电压为0,此时的电感的电流为最大,不断循环重复这个过程,逐渐衰减为0。
所谓的阻尼就是描述系统达到稳定时过程,当外界施加一个激励时,零阻尼时,系统在平衡状态上下来回振荡;过阻尼时,系统可以一次达到平衡状态,但是需要很长的时间,快速性不够;欠阻尼时,系统在平衡状态处来回振荡,最终达到平衡;临界阻尼时,系统快速准确的达到了平衡状态,这是我们理想的状态。
临界阻尼计算公式:R=2√(L/C) ,
过阻尼:R>2√(L/C),此时电路有不等负实数的两个特征根,非振荡放电过程。
欠阻尼:R<2√(L/C),此时电路有一对共轭复数的两个特征根,振荡放电过程。
零阻尼:R=2√(L/C),此时电路有两个相同的特征根,处于非振荡放电的临界状态。
1、欠阻尼状态
当0<ζ <1时的解为一对实部为负的共轭复根,系统时间响应具有振荡特征,称为欠阻尼状态。
2、临界阻尼
当ζ = 1时的解为一对重实根,此时系统的阻尼形式称为临界阻尼。现实生活中,许多大楼内房间或卫生间的门上在装备自动关门的扭转弹簧的同时,都相应地装有阻尼铰链,使得门的阻尼接近临界阻尼,这样人们关门或门被风吹动时就不会造成太大的声响。
3、过阻尼
当ζ > 1时的解为一对互异实根,此时系统的阻尼形式称为过阻尼。当自动门上安装的阻尼铰链使门的阻尼达到过阻尼时,自动关门需要更长的时间。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4、串联谐振(产生谐振时电抗Xc+XL=0)
由于电感的电流滞后电压90°,电容的电流超前电压90°,所以其二者放电时产生的电流方向是相对的,又因为二者处于串联状态,所以二者的电流变得相位(方向)相同,所以产生的谐振会更大。(谐振是频率相同,相位相同的波形的叠加)
交变电源的频率越接近电容电感的频率产生的谐振越强(过电压)
串联谐振的谐振频率为:在这里插入图片描述
可见以上计算谐振频率公式中不涉及电路中电阻的影响,其可以满足大多数的情况。但是,在低频情况下(使用具有相当大内部电阻的大型电感器)常常不够准确。在这种情况下,需要一个更复杂的公式,其中也要考虑电阻。以下公式可用于低频(较大的内部电阻)计算。在这里插入图片描述
在这里插入图片描述

5、并联谐振
由于电感和电容相互并联,其二者放电时产生的电流方向相对,相互抵消(但也会有一定的电流溢出,阻碍电源电流)。当电源的频率接近电感和电容相互并联的频率时,相当于电感和电容相互完全抵消,电路中电感和电容并联的这一部分处于开路状态,此时产生的谐振最小。
在这里插入图片描述
6、高通滤波器(RC)
实际看作电阻分压的原理,当频率无穷大的时候,电容容抗为0,A=输出/输入=1,即输出和输入波形一致;当频率较小的时候,电容的容抗大,由于电阻的分压原理,输出的波形与输入差别较大;当频率为0时,容抗无穷大,断路。
临界点的频率用公式f=1/2πRC计算,大于该频率通过
在这里插入图片描述
7、低通滤波器(RC)
与高通滤波原理相似,都是利用电阻的分压原理。
在这里插入图片描述
8、高通滤波器(RL)
与RC电路原理相似,同样是电阻分压原理,感抗= XL = ωL = 2πfL。
在这里插入图片描述
9、低通滤波器(RL)
与RC电路原理相似,同样是电阻分压原理,感抗= XL = ωL = 2πfL。
在这里插入图片描述
10、带通滤波器
实质为高通滤波与低通率波的结合,使其输出的频率能够在一定的范围内。

<think>好的,用户想了解π型滤波电路的原理和应用。首先需要明确π型滤波电路的基本结构,通常由两个电容和一个电感组成,形状像希腊字母π。接下来要分析其工作原理,包括如何滤除高频噪声,同时允许低频信号通过。可能还需要比较CLC和CRC两种类型的区别,以及各自的优缺点。 然后是关于应用部分,需要查找常见的应用场景,比如电源设计、音频设备、通信系统等,说明为什么在这些场合使用π型滤波电路。可能还要提到参数选择,比如电容和电感的数值如何影响滤波效果,以及设计时需要考虑的因素如负载电流、纹波电压等。 需要确保信息准确,可能需要搜索权威的电子工程网站或教材,参考实际电路设计案例。同时,注意用户要求不要集中引用,所以要将引用内容自然地融入各个部分。还要检查是否有最新的应用趋势,比如在开关电源中的使用情况。 最后,生成相关问题时要基于原理和应用,可能涉及设计步骤、参数计算、与其他滤波电路的比较等。确保问题具体且有逻辑性,帮助用户深入理解。</think>π型滤波电路由两个电容和一个电感(或电阻)构成CLC或CRC结构,因拓扑形态类似希腊字母π而得名。该电路具有双向滤波特性,在电源和信号处理领域应用广泛。 **工作原理** 1. **高频衰减机制** 输入端的并联电容$C_1$对高频干扰形成低阻抗通路,电感$L$(或电阻$R$)与输出电容$C_2$构成二级滤波。传递函数可表示为: $$H(s) = \frac{1}{(1 + sR_1C_1)(1 + sR_2C_2)}$$ 对于CLC型,$R_1$和$R_2$替换为电感阻抗$sL$ 2. **纹波抑制特性** 在电源电路中,输入电容降低脉动电压幅度,电感抑制电流突变,输出电容进一步平滑电压。典型纹波衰减比可达40-60dB **设计要点** - 截止频率计算: $$f_c = \frac{1}{2π\sqrt{LC}}$$ (适用于CLC型) - 电容选取需考虑ESR值,电解电容与陶瓷电容组合可优化高频特性 - 电感额定电流应大于最大负载电流的30% **典型应用** 1. **开关电源输出滤波** 在DC-DC转换器输出端,常用CLC结构(100μF+10μH+100μF)抑制MHz级开关噪声 2. **音频信号调理** 采用CRC型(100nF+100Ω+100nF)滤除20kHz以上射频干扰 3. **射频模块供电** π型滤波配合磁珠构成三级滤波,典型配置:10μF+1μH+0.1μF **调试注意事项** - 避免电感饱和导致滤波失效 - 布局时缩短电容接地路径 - 高温环境下需考虑电容容量衰减 ```spice * π型滤波SPICE示例 V1 in 0 PULSE(0 5 0 1n 1n 10u 20u) C1 in mid 100u L1 mid out 10u C2 out 0 100u RL out 0 50 .tran 0.1u 100u ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值