CP.10基本子空间

四个基本子空间

A m × n A_{m\times n} Am×n例如 A = [ 1 2 3 4 5 6 ] 2 × 3 A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}_{2\times3} A=[142536]2×3
列空间 C ( A ) C(A) C(A):所有列的线性组合, R m R^m Rm
A = [ 1 2 3 4 5 6 ] 2 × 3 → [ 1 0 − 1 0 1 2 ] 2 × 3 A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}_{2\times3}\rightarrow\begin{bmatrix}1&0&-1\\0&1&2\end{bmatrix}_{2\times3} A=[142536]2×3[100112]2×3 R ( A ) = 2 R(A)=2 R(A)=2所以有一个自由列,因此列空间的基只有两组向量,因此列空间维数为 R 2 R^2 R2,并不是矩阵有几列,列空间就是几维,因为这之中存在多余列。

零空间 N ( A ) N(A) N(A) A X = 0 AX=0 AX=0的解, R n R^n Rn
行空间 R ( A ) R(A) R(A):所有行的线性组合(所有 A T A^T AT列的线性组合), R n R^n Rn
转置零空间 N ( A T ) N(A^T) N(AT):通常称作 A A A的左零空间, R m R^m Rm

列空间 C ( A ) C(A) C(A)

列空间的基就是初等行变换之后的主列(pivot columns),空间维数就是 R ( A ) R(A) R(A)

行空间 R ( A ) R(A) R(A)

行空间的基就是初等行变换之后的主行(pivot rows),空间维数就是 R ( A ) R(A) R(A)。行空间与列空间的维数都是 R ( A ) R(A) R(A)
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] → [ 1 0 1 1 0 1 1 0 0 0 0 0 ] = [ I F 0 0 ] A=\begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix}\rightarrow \begin{bmatrix}1&0&1&1\\0&1&1&0\\0&0&0&0\end{bmatrix}=\begin{bmatrix}I&F\\0&0\end{bmatrix} A= 111212323111 100010110100 =[I0F0]
A的行空间的一组基是: [ 1 0 1 1 ] \begin{bmatrix}1&0&1&1\end{bmatrix} [1011] [ 0 1 1 0 ] \begin{bmatrix}0&1&1&0\end{bmatrix} [0110]
可见,矩阵A的行空间的基是最简行矩阵 R R R的前 R ( A ) R(A) R(A)行,而不是原矩阵 A A A的前两行。

零空间 N ( A ) N(A) N(A)

将A行变换然后得到最简形,然后求特解。一组特解就是零空间的基,特解是通过自由变量赋值求来的,因此有 n − R ( A ) n-R(A) nR(A)个特解,零空间的维数也是 n − R ( A ) n-R(A) nR(A)

左零空间 N ( A T ) N(A^T) N(AT)

左零空间的维数是 m − R ( A ) m-R(A) mR(A)
A T y = 0 A^Ty=0 ATy=0
向量 y y y A T A^T AT的零空间里,现在我们希望把向量 y y y放到左边去,只需要对方程两边进行转置
y T A = 0 T y^TA=0^T yTA=0T
得到一个行向量左乘矩阵,所以这个零空间被称作左零空间。那么如何求解左零空间的基?

例:尝试从 A → R A\rightarrow R AR的过程中是否能发现左零空间基的一些信息。
思路: [ A m × n   I m × n ] → [ R m × n   E m × n ] \begin{bmatrix}A_{m\times n}\,I_{m\times n}\end{bmatrix}\rightarrow\begin{bmatrix}R_{m\times n}\,E_{m\times n}\end{bmatrix} [Am×nIm×n][Rm×nEm×n]
通过将矩阵 A A A消元得到矩阵 R R R,该过程的消元矩阵记作 E E E,即 E A = R EA=R EA=R。若 A A A为仿真,且 R = I R=I R=I,则有 E = A − 1 E=A^{-1} E=A1
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] A=\begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix} A= 111212323111
E A = [ − 1 2 0 1 − 1 0 − 1 0 1 ] [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] = R EA=\begin{bmatrix}-1&2&0\\1&-1&0\\-1&0&1\end{bmatrix}\begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix}=\begin{bmatrix}1&0&1&1\\0&1&1&0\\0&0&0&0\end{bmatrix}=R EA= 111210001 111212323111 = 100010110100 =R
从上式可以看出,矩阵 E E E的最后一行使得矩阵 A A A的行向量线性组合得到0向量。也就是说 [ − 1 0 1 ] [ 1 2 3 1 1 1 2 1 1 2 3 1 ] = [ 0 0 0 0 ] \begin{bmatrix}-1&0&1\end{bmatrix}\begin{bmatrix}1&2&3&1\\1&1&2&1\\1&2&3&1\end{bmatrix}=\begin{bmatrix}0&0&0&0\end{bmatrix} [101] 111212323111 =[0000]
y T A = 0 y^TA=0 yTA=0因此求得了 y T = [ − 1 0 1 ] y^T=\begin{bmatrix}-1&0&1\end{bmatrix} yT=[101]
矩阵 R R R的秩是2,行数是3,因此左零空间的维度是1

新型向量空间

所有的3x3矩阵看作“向量”,符合对于线性运算封闭,将矩阵空间称作M
M的子空间包括:
1.所有的上三角阵
2.所有的对称阵
3.所有的对角阵
对角阵是前两个子空间的交集,其维数为3,具有以下一组基:
[ 1 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix}\begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix}\begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix} 100000000 000010000 000000001

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值