1.3 空间的基

空间的基

二维三维空间最重要的性质是, m ≤ 3 m\le3 m3 维空间中存在 m m m 个向量,其线性组合能唯一表示空间中任意向量,能推广到高维空间吗?

二维空间中任意向量表示为 v = ( x , y ) \mathbf{v} = (x,y) v=(x,y) ,三维空间中任意向量表示为 v = ( x , y , z ) \mathbf{v} = (x,y,z) v=(x,y,z) ,以此类推。

定义 m m m 维向量 任意 m m m 个有序实数构成的向量 v = ( v 1 , v 2 , ⋯   , v m ) \mathbf{v} = (v_1,v_2,\cdots,v_m) v=(v1,v2,,vm)

定义 m m m 维空间 所有 m m m 维向量构成的集合 S = { v } S = \{\mathbf{v} \} S={v} ,记为 R m R^m Rm ,向量集合也称向量空间,简称空间。

空间是向量集合,这是线性代数对空间的表示!

二维和三维空间存在直角坐标系,空间中任意向量向坐标轴投影,得到坐标值,高维空间同样存在直角坐标系,这是空间的一个极其重要的性质。

基的基本性质和无关组

例如 m m m 维空间中向量组 E = ( e i = ( 0 , ⋯   , 1 , ⋯   , 0 ) , i ∈ [ 1 , m ] ) {E} = (\mathbf{e_i} = (0,\cdots,1,\cdots,0),\quad i \in [1,m] ) E=(ei=(0,,1,,0),i[1,m]) m m m 维向量 e i \mathbf{e_i} ei m m m 个分量,只有第 i i i 个分量为1,其他分量均为0。向量组中每个向量长度均为1,任意两个不同向量的内积为0(互相垂直)。该向量组构成直角坐标系,每个向量是一个坐标轴。

根据向量运算规则,可得 m m m 维空间任意向量均可唯一表示为
( v 1 , v 2 , ⋯   , v m ) = ∑ i = 1 m v i e i (v_1,v_2,\cdots,v_m) = \sum^m_{i=1}v_i\mathbf{e_i} (v1,v2,,vm)=i=1mviei
表示系数组是 ( v 1 , v 2 , ⋯   , v m ) (v_1,v_2,\cdots,v_m) (v1,v2,,vm) ,是被表示向量本身!分量 v i v_i vi 为坐标值,根据该性质,得到如下结论。

重要性质 m m m 维空间中存在 m m m 个向量,其线性组合能唯一表示空间中任意向量。

这个性质可以看作是公理。

存在无穷多种 m m m 个向量,其线性组合能唯一表示空间中任意向量。例如向量组 E ′ = ( e i ′ = λ i e i , i = 1 , ⋯   , m ) {E'}=(\mathbf{e_i}'=\lambda_i\mathbf{e_i},i=1,\cdots,m) E=(ei=λiei,i=1,,m) ,只要每个 λ i ≠ 0 \lambda_i \ne 0 λi=0 ,就能表示任意向量。
( v 1 , v 2 , ⋯   , v m ) = ∑ i = 1 m v i λ i e i ′ (v_1,v_2,\cdots,v_m) = \sum^m_{i=1} \frac{v_i}{\lambda_i}\mathbf{e_i}' (v1,v2,,vm)=i=1mλiviei
表示系数组是 ( v 1 / λ 1 , v 2 / λ 2 , ⋯   , v m / λ m ) (v_1/\lambda_1,v_2/\lambda_2,\cdots,v_m/\lambda_m) (v1/λ1,v2/λ2,,vm/λm) 。向量组 E ′ E' E 中任意两个不同向量的内积为0(互相垂直),每个向量 e i ′ \mathbf{e_i}' ei 长度为 ∣ λ i ∣ |\lambda_i| λi 。向量组 E ′ E' E 称为广义坐标系,每个向量 e i ′ \mathbf{e_i}' ei 称为广义坐标轴,对应系数 v i / λ i {v_i}/{\lambda_i} viλi 称为广义坐标值。

定义 空间的基 能唯一表示空间中任意向量的向量组称为基。

注意基的向量不一定要互相垂直,甚至任意两个向量都不需垂直。比如二维空间中,任意不共线的两个向量是基,如前面例子所示两个二维向量 v = ( 1 , 1 ) \mathbf{v}=(1,1) v=(1,1) w = ( 2 , 1 ) \mathbf{w}=(2,1) w=(2,1) ,就是基,每个向量长度不为1,不互相垂直。

三维空间中,任意不共面的三个向量是基。它们均不需垂直,当然了,如果基向量两两互相垂直,这样的基使用起来更方便,表示系数更容易从基和被表示向量计算出来!

向量组要成为基,需要具备什么条件呢?任意向量肯定不行,三维空间中如果这些向量都位于平面内,显然不行。

重要性质 空间中任意向量能被基唯一表示。

重要性质 0 \mathbf{0} 0 向量被基表示时,有唯一表示且表示系数组为全零 ( 0 , ⋯   , 0 ) (0,\cdots,0) (0,,0)

这个性质看起来平凡,但在线性代数具有基础地位,希望大家牢记。这个性质看起来很直观,但必须证明!

证明如下,存在性很显然,当表示系数组为全零时,任意向量组的线性组合均是 0 \mathbf{0} 0 向量。

证唯一性,令基为向量组 V = ( v 1 , ⋯   , v n ) V = (\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) 。假如 0 \mathbf{0} 0 向量有非全0的线性组合表示,令表示系数组为 ( λ 1 , ⋯   , λ n ) (\lambda_1,\cdots,\lambda_{n}) (λ1,,λn) ,满足
0 = λ 1 v 1 + ⋯ + λ n v n \mathbf{0} = \lambda_1\mathbf{v_1}+\cdots+\lambda_{n}\mathbf{v_{n}} 0λ1v1++λnvn
对任意向量 y \mathbf{y} y ,根据基的性质,一定有表示系数组,满足
y = α 1 v 1 + ⋯ + α n v n \mathbf{y} = \alpha_1\mathbf{v_1}+\cdots+\alpha_n\mathbf{v_n} y=α1v1++αnvn

y = y + k 0 = α 1 v 1 + ⋯ + α n v n + k ( λ 1 v 1 + ⋯ + λ n v n ) \mathbf{y} = \mathbf{y} + k\mathbf{0} = \alpha_1\mathbf{v_1}+\cdots+\alpha_n\mathbf{v_n} \\ +k(\lambda_1\mathbf{v_1}+\cdots+\lambda_{n}\mathbf{v_{n}}) y=y+k0=α1v1++αnvn+k(λ1v1++λnvn)

k k k 取任意实数,这说明任意向量 y \mathbf{y} y 有无穷多种线性表示,与基的性质(唯一表示)矛盾!

重要性质 基中的任一向量不能表示为基中其他向量的线性组合,互相独立。

证:令基为向量组 V = ( v 1 , ⋯   , v n ) V = (\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) 。假如存在某个基向量能表示为其他向量的线性组合,不妨令向量 v n \mathbf{v_n} vn 能表示为其他向量的线性组合,则存在表示系数组 ( λ 1 , ⋯   , λ n − 1 ) (\lambda_1,\cdots,\lambda_{n-1}) (λ1,,λn1) ,满足
v n = λ 1 v 1 + ⋯ + λ n − 1 v n − 1 \mathbf{v_n} = \lambda_1\mathbf{v_1}+\cdots+\lambda_{n-1}\mathbf{v_{n-1}} vnλ1v1++λn1vn1
等式两边减去向量 v n \mathbf{v_n} vn ,得
0 = λ 1 v 1 + ⋯ + λ n − 1 v n − 1 − v n \mathbf{0} = \lambda_1\mathbf{v_1}+\cdots+\lambda_{n-1}\mathbf{v_{n-1}} - \mathbf{v_n} 0λ1v1++λn1vn1vn
这说明 0 \mathbf{0} 0 向量的表示系数组为 ( λ 1 , ⋯   , λ n − 1 , − 1 ) (\lambda_{1},\cdots,\lambda_{n-1},-1) (λ1,,λn1,1) ,因为最后分量是-1,所以表示系数不是全0,这与 0 \mathbf{0} 0 向量有唯一表示且表示系数组为全零,矛盾!

是否存在 n < m n < m n<m 个向量,其线性组合能唯一表示 m m m 维空间中任意向量?

重要性质 m m m 维向量有 m m m 个分量,每个分量都是自由变量,而 n n n 个向量的线性组合只有 n n n 个自由变量,当 n < m n < m n<m 时,必然存在不能被表示的向量,所以 m m m 维空间中基的向量数量不能少于 m m m

重要性质 m m m 维空间中基的向量数量必是 m m m

0 \mathbf{0} 0 向量的全零表示和向量互相独立, 这两个重要性质不仅对基成立,而且对基的任意子集也成立!这两个性质还是等价的,它们如此重要,数学中对重要性质必须取个名,进行定义,方便交流。

定义 线性无关组 基的任意子集,包括基本身,简称无关组。

根据定义,单个非零向量是无关组!

重要性质 0 \mathbf{0} 0 向量被无关组表示时,有唯一表示且表示系数组为全零。

重要性质 无关组中任一向量不能表示为其他向量的线性组合,互相独立。

重要性质 无关组的任意子集,是无关组。

因为无关组的子集也是基的子集。

重要性质 无关组是基的子集,所以 m m m 维空间中无关组中向量数量最多只能是 m m m

任意向量被基表示时,只有唯一表示。无关组是基的子集,当某向量能被无关组表示时,表示也唯一吗?

重要性质 如果某向量能被无关组表示,则表示唯一。

该性质在线性代数中具有无比重要的地位。

证明:令无关组为 V = ( v 1 , ⋯   , v n ) V = (\mathbf{v_1},\cdots,\mathbf{v_n}) V=(v1,,vn) ,假设向量 y \mathbf{y} y 有两种表示,为
y = λ 1 v 1 + ⋯ + λ n v n y = β 1 v 1 + ⋯ + β n v n \mathbf{y} = \lambda_1\mathbf{v_1}+\cdots+\lambda_{n}\mathbf{v_{n}} \\ \mathbf{y} = \beta_1\mathbf{v_1}+\cdots+\beta_{n}\mathbf{v_{n}} y=λ1v1++λnvny=β1v1++βnvn
两式相减,得
0 = y − y = ( λ 1 − β 1 ) v 1 + ⋯ + ( λ n − β n ) v n \mathbf{0} = \mathbf{y-y} = (\lambda_1-\beta_1)\mathbf{v_1}+\cdots+(\lambda_n-\beta_n)\mathbf{v_{n}} 0=yy=(λ1β1)v1++(λnβn)vn
这表明 0 \mathbf{0} 0 向量的表示系数组为 ( ( λ 1 − β 1 ) , ⋯   , ( λ n − β n ) ) ((\lambda_1-\beta_1),\cdots,(\lambda_n-\beta_n)) ((λ1β1),,(λnβn)) ,不是全0,与 0 \mathbf{0} 0 向量有唯一表示且表示系数组为全零,矛盾!

无关组是基的子集,那向无关组中增加新的向量,能使其成为基吗?

重要性质 任意无关组都能通过增加新向量,使其扩充为基。

证:假设无关组为 V V V ,则空间中必存在不能被 V V V 表示的向量,将该向量加入 V V V V 1 V_1 V1 ,则 V 1 V_1 V1 是无关组,如果 V 1 V_1 V1 是基,则结束。如果不是,则空间中必存在不能被 V 1 V_1 V1 表示的向量,将该向量加入 V 1 V_1 V1 V 2 V_2 V2 ,则 V 2 V_2 V2 是无关组,如果 V 2 V_2 V2 是基,则结束。如果不是,一直继续下去,最终必将获得基,因为基只有有限个向量。

重要性质 无关组是基的真子集时,基中剩下的任意向量都不能被无关组表示,它们的线性组合也不能被无关组表示,这样空间中必存在不能被无关组表示的向量。

基的关系和向量组等价

m m m 维空间中存在任意多的基,这些基之间有什么关系呢?

令两个基分别为向量组 V = ( v 1 , ⋯   , v m ) V = (\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) W = ( w 1 , ⋯   , w m ) W = (\mathbf{w_1},\cdots,\mathbf{w_m}) W=(w1,,wm) ,注意必须是 m m m 个向量!

由于任意向量均能被基唯一表示,则基 W W W 中的每个向量都能被基 V V V 唯一表示!
w 1 = α 11 v 1 + ⋯ + α 1 m v m = V α 1 ⋮ w i = α i 1 v 1 + ⋯ + α i m v m = V α i ⋮ w m = α m 1 v 1 + ⋯ + α m m v m = V α m W = ( w 1 , ⋯   , w m ) = ( V α 1 , ⋯   , V α m ) = V ( α 1 , ⋯   , α m ) = V A \mathbf{w_1} = \alpha_{11}\mathbf{v_1} + \cdots + \alpha_{1m}\mathbf{v_m} = V\mathbf{\alpha_{1}} \\ \vdots \\ \mathbf{w_i} = \alpha_{i1}\mathbf{v_1} + \cdots + \alpha_{im}\mathbf{v_m} = V\mathbf{\alpha_{i}} \\ \vdots \\ \mathbf{w_m} = \alpha_{m1}\mathbf{v_1} + \cdots + \alpha_{mm}\mathbf{v_m} = V\mathbf{\alpha_{m}}\\ W = (\mathbf{w_1},\cdots,\mathbf{w_m})=(V\mathbf{\alpha_{1}},\cdots,V\mathbf{\alpha_{m}})=V(\mathbf{\alpha_{1}},\cdots,\mathbf{\alpha_{m}})=V\Alpha w1=α11v1++α1mvm=Vα1wi=αi1v1++αimvm=Vαiwm=αm1v1++αmmvm=VαmW=(w1,,wm)=(Vα1,,Vαm)=V(α1,,αm)=VA
向量 w i \mathbf{w_i} wi 表示系数组为 α i = ( α i 1 , ⋯   , α i m ) \mathbf{\alpha_{i}} = (\alpha_{i1},\cdots,\alpha_{im}) αi=(αi1,,αim) ,为了使公式看起来简洁,采用了简记符号。

同理,基 V V V 中的每个向量都能被基 W W W 唯一表示,同样可得,
V = ( v 1 , ⋯   , v m ) = ( W α 1 ′ , ⋯   , W α m ′ ) = W ( α 1 ′ , ⋯   , α m ′ ) = W A ′ V = (\mathbf{v_1},\cdots,\mathbf{v_m})=(W\mathbf{\alpha_{1}'},\cdots,W\mathbf{\alpha_{m}'})=W(\mathbf{\alpha_{1}'},\cdots,\mathbf{\alpha_{m}'})=W\Alpha' V=(v1,,vm)=(Wα1,,Wαm)=W(α1,,αm)=WA
即两个基可互相表示,将此概念推广到任意两个向量组,定义向量组等价概念!

定义 两个向量组可互相表示 向量组1的任一向量可由向量组2线性表示,向量组2的任一向量可由向量组1线性表示。

定义 两个向量组等价 两个向量组可互相表示。

重要性质 m m m 维空间中任意基互相等价。

注意向量组等价,不一定要求向量组包含相同数目的向量。比如向基中增加任意数目的任意向量后,新的向量组能表示空间中任意向量,所以它和任意基等价。

向量组等价,不一定要求向量组包含基。比如无关组,向无关组中增加任意数目的能由无关组表示的向量后,新的向量组和原无关组等价。

两个无关组也可以等价,比如三维空间中向量组 ( ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) ) ((1,0,0),(0,1,0)) ((1,0,0),(0,1,0)) 和向量组 ( ( 1 , 2 , 0 ) , ( 1 , 1 , 0 ) ) ((1,2,0),(1,1,0)) ((1,2,0),(1,1,0)) 等价。

重要性质 m m m 维空间中两个无关组等价时,其包含的向量数量必须相等。

无关组中任一向量不能表示为其他向量的线性组合,每个向量都是独立的,向量数量不同的无关组能表示的"向量总数"是不同的,所以不可能等价。等价关系是对向量组的整体评价,不能局限于单个向量。线性空间章节对此有深入探讨。

最简基:标准正交基

任意 m m m 个线性无关的向量都是基,那什么基最好,如何衡量基的好坏?猜测最好的基就是坐标系,为什么呢?需要进行理论提升,并推广到 m m m 维空间。

m m m 维空间中基向量为 V = ( v 1 , ⋯   , v m ) V = (\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) ,对任意向量 y \mathbf{y} y ,根据基的性质,有唯一表示,
y = α 1 v 1 + ⋯ + α m v m \mathbf{y} = \alpha_1\mathbf{v_1}+\cdots+\alpha_m\mathbf{v_m} y=α1v1++αmvm

如何求出表示系数组 ( α 1 , ⋯   , α m ) (\alpha_1,\cdots,\alpha_m) (α1,,αm) 呢?一般来说当基是任意的,是比较困难的,但当基向量互相解耦时,很容易求出。解耦就是向量之间没有耦合在一起,可以独立处理每个向量,这个概念十分重要。

几何学大量研究对象互相垂直,有线与线、线与面和面与面的垂直。为什么垂直如此重要?一个是人类与地面垂直,树木与地面垂直,天天接触到垂直现象,当然要重点研究。二是数学上,两个对象垂直,则内积为0,0是最特殊的数,万数从零中孕育,与0结合后(相乘)又归于0!

0乘以任意数为0,这是对象能解耦的数学基础。上式两边与任意基向量 v i \mathbf{v_i} vi 求内积,
( v i , y ) = ( v i , α 1 v 1 + ⋯ + α m v m ) = α 1 ( v i , v 1 ) + ⋯ + α m ( v i , v m ) (\mathbf{v_i},\mathbf{y}) = (\mathbf{v_i},\alpha_1\mathbf{v_1}+\cdots+\alpha_m\mathbf{v_m}) =\alpha_1(\mathbf{v_i},\mathbf{v_1})+\cdots+\alpha_m(\mathbf{v_i},\mathbf{v_m}) (vi,y)=(vi,α1v1++αmvm)=α1(vi,v1)++αm(vi,vm)

当任意不同基向量的内积 ( v i , v j ) (\mathbf{v_i},\mathbf{v_j}) (vi,vj) 都为0时,等式右边各个基向量就解耦了,只剩下一项内积--自身内积。
( v i , y ) = α i ( v i , v i ) α i = ( v i , y ) / ( v i , v i ) = ( v i , y ) / ∥ v i ∥ 2 (\mathbf{v_i},\mathbf{y}) = \alpha_i(\mathbf{v_i},\mathbf{v_i}) \\ \alpha_i = (\mathbf{v_i},\mathbf{y}) /(\mathbf{v_i},\mathbf{v_i}) = (\mathbf{v_i},\mathbf{y}) /\|\mathbf{v_i}\|^2 (vi,y)=αi(vi,vi)αi=(vi,y)/(vi,vi)=(vi,y)/vi2
表示系数只与自身向量有关,解耦!

定义 正交基 任意两个基向量垂直,也称基向量两两垂直或互相垂直。

二维空间中任意互相垂直的两个向量是正交基;三维空间中任意互相垂直的三个向量是正交基。

定义 标准正交基 正交基中每个基向量是单位向量时,即 ∥ v i ∥ = 1 \|\mathbf{v_i}\|=1 vi=1

此时,表示系数为 α i = ( v i , y ) \alpha_i = (\mathbf{v_i},\mathbf{y}) αi=(vi,y) 。根据内积的几何意义,表示系数为表示向量与基向量的投影,所以最容易算出表示系数的基就是最好基--标准正交基。
此时表示向量为

y = ( v 1 , y ) v 1 + ⋯ + ( v m , y ) v m \mathbf{y} = (\mathbf{v_1},\mathbf{y})\mathbf{v_1}+\cdots+(\mathbf{v_m},\mathbf{y})\mathbf{v_m} y=(v1,y)v1++(vm,y)vm
这就是矢量的正交分解!

根据内积计算公式,计算内积需要计算 m m m 个分量的乘积,当基向量有很多0分量时,称向量稀疏,计算速度更快。最稀疏的基向量只有一个非零分量。例如 m m m 维空间中向量组 E = ( e i = ( 0 , ⋯   , 1 , ⋯   , 0 ) , i ∈ [ 1 , m ] ) {E}=(\mathbf{e_i}=(0,\cdots,1,\cdots,0),\quad i \in [1,m]) E=(ei=(0,,1,,0),i[1,m]) m m m 维向量 e i \mathbf{e_i} ei m m m 个分量,只有第 i i i 个分量为1,其他分量均为0,是最稀疏的标准正交基。当非零分量不为1时,是最稀疏的正交基。

如果基中向量不互相垂直,可以通过操作使之互相垂直。很可惜不是所有基都能变换成最稀疏的正交基,部分基可以。

基张成整个空间

m m m 维空间是向量的集合,该集合包括空间中任意向量。怎么用数学工具定量描述这个集合呢?因为空间中向量是不可数的(和自然数集找不到一一对应的关系),所以一一列出来是不可能的(整数和有理数都可一一列出来,实数不可一一列出来)。基的线性组合可以表示空间中任意向量,这为描述 m m m 维空间提供了技术手段。

m m m 维空间中任意基 V = ( v 1 , ⋯   , v m ) V=(\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) ,基 V V V 的线性组合能表示空间中任意向量,所以基的线性组合能表示的向量集合就是 m m m 维空间!记为 S ( V ) S(V) S(V) ,空间 S S S 称为由基 V V V 张成,基 V V V 称为空间 S S S 的生成基。

m m m 维空间中基向量为 V = ( v 1 , ⋯   , v m ) V = (\mathbf{v_1},\cdots,\mathbf{v_m}) V=(v1,,vm) ,其线性组合表示的向量集合为
S ( V ) = { α 1 v 1 + ⋯ + α m v m : α i ∈ R   , ∀ i = [ 1 , m ] S(V)=\{\alpha_1\mathbf{v_1}+\cdots+\alpha_m\mathbf{v_m} : \alpha_i \in R\ ,\forall i = [1,m] S(V)={α1v1++αmvm:αiR ,i=[1,m]

表示系数为任意实数,向量集合为整个空间。可以从多元函数角度观察基的线性组合,表示系数组为 m m m 元自变量,定义域为 R m R^m Rm 空间,输出为 R m R^m Rm 空间向量。自变量取完定义域中所有值,输出得到空间所有向量。函数是一一映射,因为基能唯一表示空间的任意向量,所以空间的任意向量只有唯一表示。

举例如下,二维空间中,假设有2个基,分别为: V 1 = ( ( 1 , 0 ) , ( 0 , 1 ) ) V_1 = ((1,0),(0,1)) V1=((1,0),(0,1)) V 2 = ( ( 1 , 1 ) , ( 0 , 1 ) ) V_2 = ((1,1),(0,1)) V2=((1,1),(0,1)) 。张成空间分别为: S ( V 1 ) = ( α ( 1 , 0 ) + β ( 0 , 1 ) = ( α , β ) ) S(V_1) = (\alpha(1,0)+\beta(0,1)=(\alpha,\beta)) S(V1)=(α(1,0)+β(0,1)=(α,β)) S ( V 2 ) = ( α , α + β ) S(V_2) = (\alpha,\alpha+\beta) S(V2)=(α,α+β) ,张成空间 S ( V 1 ) S(V_1) S(V1) S ( V 2 ) S(V_2) S(V2) 虽然生成基不同,但是它们都是整个二维空间。

从生成空间都是同一空间,即整个 m m m 维空间的角度看,任意基是等价!

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值