CP.23微分方程与状态转移矩阵

1微分方程

引入微分方程组:
d u 1 d t = − u 1 + 2 u 2 ( 1 ) d u 2 d t = u 1 − 2 u 2 ( 2 ) \begin{aligned}\frac{du_1}{dt}&=-u_1+2u_2 (1)\\ \frac{du_2}{dt}&=u_1-2u_2(2)\end{aligned} dtdu1dtdu2=u1+2u2(1)=u12u2(2)
两式相加可以得到: u 1 ˙ = − u 2 ˙ ( 3 ) \dot{u_1}=-\dot{u_2}(3) u1˙=u2˙(3)
将(3)带入(2)可得 ( u 1 + u 1 ˙ 2 ) ′ = u 1 − ( u 1 + u 1 ˙ ) → u 1 ¨ + 3 u 1 ˙ = 0 ( 5 ) (\frac{u_1+\dot{u_1}}{2})'=u_1-(u_1+\dot{u_1})\rightarrow\ddot{u_1}+3\dot{u_1}=0(5) (2u1+u1˙)=u1(u1+u1˙)u1¨+3u1˙=0(5)
从式(5)可以看出, u 1 u_1 u1的一阶导数和二阶导数是线性关系,这让人不禁联想到函数 e x e^x ex
因为 u 1 u_1 u1是自变量 t t t的函数,于是我们假设原函数
u 1 = c e λ t u_1=ce^{\lambda t} u1=ceλt
根据常用函数导数表(百度)可得
u 1 ˙ = λ c e λ t u 1 ¨ = λ 2 c e λ t \begin{aligned}\dot{u_1}&=\lambda ce^{\lambda t} \\\ddot{u_1}&=\lambda^2ce^{\lambda t}\end{aligned} u1˙u1¨=λceλt=λ2ceλt
根据式子(5)可得 a 2 c e λ t + 3 a c e λ t = 0 a^2ce^{\lambda t}+3ace^{\lambda t}=0 a2ceλt+3aceλt=0两边同时约去 c e λ t ce^{\lambda t} ceλt可得 λ 2 + 3 λ = 0 ( 6 ) \lambda^2+3\lambda=0(6) λ2+3λ=0(6)解得 λ 1 = 0 , λ 2 = − 3 \lambda_1=0,\lambda_2=-3 λ1=0λ2=3,于是原方程的通解为 e 0 t 和 e − 3 t e^{0t}和e^{-3t} e0te3t,其线性组合即为方程组的解 u 1 = c 1 e 0 t + c 2 e − 3 t u_1=c_1e^{0t}+c_2e^{-3t} u1=c1e0t+c2e3t
u 2 u_2 u2做同样的操作可以解得 u 2 = d 1 e 0 t + d 2 e − 3 t u_2=d_1e^{0t}+d_2e^{-3t} u2=d1e0t+d2e3t其中 d 1 = c 2 , d 2 = − c 2 d_1=\frac{c}{2},d_2=-c_2 d1=2c,d2=c2

2.微分方程的线性代数解法

d u 1 d t = − u 1 + 2 u 2 d u 2 d t = u 1 − 2 u 2 \begin{aligned}\frac{du_1}{dt}&=-u_1+2u_2 \\ \frac{du_2}{dt}&=u_1-2u_2\end{aligned} dtdu1dtdu2=u1+2u2=u12u2
U t = [ u 1 ( t ) u 2 ( t ) ] U_t=\begin{bmatrix}u_1(t)\\u_2(t)\end{bmatrix} Ut=[u1(t)u2(t)]
原方程组可以表达为
d U ( t ) d t = [ − 1 2 1 − 2 ] [ u 1 ( t ) u 2 ( t ) ] \frac{dU(t)}{dt}=\begin{bmatrix}-1&2\\1&-2\end{bmatrix}\begin{bmatrix}u_1(t)\\u_2(t)\end{bmatrix} dtdU(t)=[1122][u1(t)u2(t)]
特征矩阵 A = [ − 1 2 1 − 2 ] A=\begin{bmatrix}-1&2\\1&-2\end{bmatrix} A=[1122],其特征根为 λ 1 = 0 , λ 2 = 3 \lambda_1=0,\lambda_2=3 λ1=0,λ2=3,相应的特征向量是 x 1 = [ 2 1 ] , x 2 = [ 1 − 1 ] x_1=\begin{bmatrix}2\\1\end{bmatrix},x_2=\begin{bmatrix}1\\-1\end{bmatrix} x1=[21],x2=[11]
由前面的微分方程的知识可以知道
U ( t ) = [ u 1 ( t ) u 2 ( t ) ] = [ c 1 e λ 1 t + c 2 e λ 2 t 1 2 c 1 e λ 1 t − c 2 e λ 2 t ] = 1 2 c 1 e λ 1 t [ 2 1 ] + c 2 e λ 2 t [ 1 − 1 ] = 1 2 c 1 e λ 1 t x 1 + c 2 e λ 2 t x 2 U(t)=\begin{aligned}\begin{bmatrix}u_1(t)\\u_2(t)\end{bmatrix}&=\begin{bmatrix}c_1e^{\lambda_1t}+c_2e^{\lambda_2t}\\\frac{1}{2}c_1e^{\lambda_1t}-c_2e^{\lambda_2t}\end{bmatrix} \\&=\frac{1}{2}c_1e^{\lambda_1t}\begin{bmatrix}2\\1\end{bmatrix}+c_2e^{\lambda_2t} \begin{bmatrix}1\\-1\end{bmatrix} \\&=\frac{1}{2}c_1e^{\lambda_1t}x_1+c_2e^{\lambda_2t}x_2\end{aligned} U(t)=[u1(t)u2(t)]=[c1eλ1t+c2eλ2t21c1eλ1tc2eλ2t]=21c1eλ1t[21]+c2eλ2t[11]=21c1eλ1tx1+c2eλ2tx2
方程的通解可以写成; u ( t ) = c 1 e λ 1 t x 1 + c 2 e λ 2 t x 2 u(t)=c_1e^{\lambda_1t}x_1+c_2e^{\lambda_2t}x_2 u(t)=c1eλ1tx1+c2eλ2tx2
也就是说,当我们知道了特征方程的特征值和特征向量之后,直接可以得到方程的解。

3.系统稳态值的探讨

如果初始值 u ( 0 ) = [ 1 0 ] u(0)=\begin{bmatrix}1\\0\end{bmatrix} u(0)=[10],那么方程最后归于稳态的时候是何种状态?先求系数:
u ( 0 ) = c 1 e λ 1 0 x 1 + c 2 e λ 2 0 x 2 = [ 1 0 ] u(0)=c_1e^{\lambda_10}x_1+c_2e^{\lambda_20}x_2=\begin{bmatrix}1\\0\end{bmatrix} u(0)=c1eλ10x1+c2eλ20x2=[10]
于是有 c 1 [ 2 1 ] + c 2 [ 1 − 1 ] = [ 1 0 ] c_1\begin{bmatrix}2\\1\end{bmatrix}+c_2\begin{bmatrix}1\\-1\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix} c1[21]+c2[11]=[10]可以解得 c 1 = c 2 = 1 3 c_1=c_2=\frac{1}{3} c1=c2=31
因此系统的通解可以写成 u ( t ) = 1 3 e 0 t x 1 + 1 3 e − 3 t x 2 u(t)=\frac{1}{3}e^{0t}x_1+\frac{1}{3}e^{-3t}x_2 u(t)=31e0tx1+31e3tx2
从方程的通解可以看出,随着时间的推移,后一项趋于0,智慧保留第一项,因此在稳态下系统状态 u = 1 3 [ 2 1 ] u=\frac{1}{3}\begin{bmatrix}2\\1\end{bmatrix} u=31[21]
这里也可以看出,特征根都是负的,系统就会趋于稳定,但是并非是有限时间收敛。

4.状态转移矩阵 e A t e^{At} eAt

特征值和特征向量的作用是解耦,又称对角化
回到原来的方程组 d u d t = A U \frac{du}{dt}=AU dtdu=AU
U = S v U=Sv U=Sv,其中 S S S是特征向量形成的矩阵, v v v表示特征向量用于线性组合与 t t t相关的项
U ( t ) = c 1 e λ 1 t x 1 + c 2 e λ 2 t x 2 = [ x 1 x 2 ] [ c 1 e λ 1 t c 2 e λ 2 t ] = S v \begin{aligned}U(t)&=c_1e^{\lambda_1t}x_1+c_2e^{\lambda_2t}x_2\\ &=\begin{bmatrix}x_1&x_2\end{bmatrix} \begin{bmatrix}c_1e^{\lambda_1t}\\c_2e^{\lambda_2t}\end{bmatrix} \\&=Sv\end{aligned} U(t)=c1eλ1tx1+c2eλ2tx2=[x1x2][c1eλ1tc2eλ2t]=Sv
d ( S v ) d t = A S v \frac{d(Sv)}{dt}=ASv dtd(Sv)=ASv
S d v d t = A S v S\frac{dv}{dt}=ASv Sdtdv=ASv
d v d t = S − 1 A S v \frac{dv}{dt}=S^{-1}ASv dtdv=S1ASv
其中, d v d t = [ λ 1 c 1 e λ 1 t λ 2 c 2 e λ 2 t ] = [ λ 1 0 0 λ 2 ] [ c 1 e λ 1 t c 2 e λ 2 t ] = Λ v \begin{aligned}\frac{dv}{dt}&=\begin{bmatrix}\lambda_1c_1e^{\lambda_1t}\\ \lambda_2c_2e^{\lambda_2t}\end{bmatrix} \\&=\begin{bmatrix}\lambda_1&0\\0&\lambda_2\end{bmatrix}\begin{bmatrix}c_1e^{\lambda_1t}\\c_2e^{\lambda_2t}\end{bmatrix} \\&=\Lambda v\end{aligned} dtdv=[λ1c1eλ1tλ2c2eλ2t]=[λ100λ2][c1eλ1tc2eλ2t]=Λv
S − 1 A S v = Λ v S^{-1}ASv=\Lambda v S1ASv=Λv
这样就完成了原来方程的解耦, d v 1 d t \frac{dv_1}{dt} dtdv1只与 v 1 v_1 v1 λ 1 \lambda_1 λ1有关系。
除此之外 v ( t ) v(t) v(t)还有另外的表达方法:
v ( t ) = [ c 1 e λ 1 t c 2 e λ 2 t ] = [ e λ 1 t 0 0 e λ 2 t ] [ c 1 c 2 ] = e Λ t v 0 \begin{aligned}v(t)&=\begin{bmatrix}c_1e^{\lambda_1t}\\c_2e^{\lambda_2t}\end{bmatrix} \\&=\begin{bmatrix}e^{\lambda_1t}&0\\0&e^{\lambda_2t}\end{bmatrix}\begin{bmatrix}c_1\\c_2\end{bmatrix}\\&=e^{\Lambda t}v_0\end{aligned} v(t)=[c1eλ1tc2eλ2t]=[eλ1t00eλ2t][c1c2]=eΛtv0
于是 U ( t ) U(t) U(t)通解还可以写成下面形式:
U ( t ) = S v ( t ) = S e Λ t v 0 = S e Λ t S − 1 u 0 U(t)=Sv(t)=Se^{\Lambda t}v_0=Se^{\Lambda t}S^{-1}u_0 U(t)=Sv(t)=SeΛtv0=SeΛtS1u0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值