状态转移矩阵计算

定义法:

在这里插入图片描述

拉氏变换法:

在这里插入图片描述

特征值法:

首先,考虑A的特征值不重时(互异),设A的特征值为λi(i = 1,2,…n),则可经过非奇异变换把A化成对角标准形,即: 在这里插入图片描述
写出:
在这里插入图片描述
展开,有:
在这里插入图片描述
所以有:
在这里插入图片描述

凯莱-哈密顿法:

考虑A的特征多项式:
在这里插入图片描述
显然对A的n个特征值:
在这里插入图片描述
有:
在这里插入图片描述
根据Cayley-Hamilton定理有:
在这里插入图片描述
即λi与A都满足特征方程式。
在这里插入图片描述
上式表明,An是An-1,An-2,…,A,I的线性组合。
可设:
在这里插入图片描述
当特征值互异时(保证范德蒙德矩阵可逆),由于λi也满足特征行列式,因此与A相同(纠结于为什么有相同的系数:证明:A和λ都满足特征行列式,A和λ具有相同地位,A完全可以替换成λ),也满足上式,即:
在这里插入图片描述
有:
在这里插入图片描述
解上述方程组可得αi(t),最后再代入:
在这里插入图片描述

### 卡尔曼滤波中的状态转移矩阵计算 状态转移矩阵 \( F \) 是卡尔曼滤波的核心组成部分之一,它描述了系统从一个时刻到下一时刻的状态变化关系。具体来说,\( F \) 定义了系统的动态特性,即如何通过前一时刻的状态来预测下一时刻的状态。 #### 状态转移矩阵的定义 假设系统的状态向量为 \( x_k \),则下一时刻的状态可以通过以下公式表示: \[ x_{k+1} = F x_k + B u_k + w_k \] 其中: - \( x_k \) 表示第 \( k \) 时刻的状态向量[^2]。 - \( F \) 是状态转移矩阵,用于描述状态随时间的变化规律。 - \( B \) 是控制输入矩阵,反映外部控制对系统的影响。 - \( u_k \) 是控制输入矢量。 - \( w_k \) 是过程噪声,服从均值为零、协方差为 \( Q \) 的高斯分布。 对于线性离散时间系统,如果已知系统的动力学模型,则可以直接推导出 \( F \) 的表达式。 --- #### 如何计算状态转移矩阵? ##### 方法 1:基于物理模型 当系统具有明确的动力学方程时,可以利用这些方程构建状态转移矩阵。例如,在匀加速运动中,位置和速度的关系可以用如下微分方程描述: \[ \begin{aligned} \dot{x}(t) &= v(t), \\ \dot{v}(t) &= a, \end{aligned} \] 将其离散化后得到状态更新方程: \[ \begin{bmatrix} x_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_k \\ v_k \end{bmatrix} + \begin{bmatrix} T_s^2 / 2 \\ T_s \end{bmatrix} a_k \] 这里,状态转移矩阵 \( F \) 可写成: \[ F = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}, \] 其中 \( T_s \) 是采样周期[^3]。 ##### 方法 2:经验建模 如果没有明确的物理模型,也可以通过对历史数据进行分析拟合得出近似的状态转移矩阵。这种方法通常依赖于统计学习技术或机器学习算法。 --- #### Python 实现示例 以下是基于上述匀加速运动的一个简单例子: ```python import numpy as np # 参数设置 Ts = 0.1 # 时间步长 (秒) # 构造状态转移矩阵 F F = np.array([[1, Ts], [0, 1]]) print("状态转移矩阵 F:") print(F) ``` 运行此代码会输出对应的时间间隔下的状态转移矩阵。 --- #### 注意事项 - 如果系统的动态行为复杂或者非线性较强,可能需要借助扩展卡尔曼滤波(EKF)或其他变体方法来进行更精确的建模。 - 过程噪声协方差矩阵 \( Q \) 和测量噪声协方差矩阵 \( R \) 对最终性能有很大影响,因此它们的选择也需要仔细考虑[^1]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值