大语言模型理解一般需求到在专业领域中最大限度地发挥其效能的演变轨迹

在人工智能技术飞速发展的当下,大语言模型(LLM)凭借其强大的语言处理能力和广泛的应用潜力,成为了各行业关注的焦点。从最初的文本生成、简单问答,到如今在专业领域的深度应用,大语言模型与用户的交互模式正经历着深刻变革。让我们深入、专业且系统地分析与大语言模型(LLM)交互时不断演变的范式,从基本的需求理解逐步发展到高级的特定领域应用,并利用复杂的提示来处理复杂任务和实现创新。

这种转变反映了大语言模型能力和用户熟练程度的成熟。最初,挑战在于在人类用户往往隐含或模糊的需求与大语言模型的通用知识之间建立一个共同的理解基础。如今,重点在于利用大语言模型的巨大潜力,在有限的、知识密集型的专业或研究领域中执行高度特定、准确且有价值的功能。高级提示是这种转变的关键接口和催化剂。

我们将通过三个相互关联的视角来分析这一问题:

  1. 基础转变:理解从一般理解到特定领域实用性的转变。
  2. 最大化领域效能:在专业领域中有效部署大语言模型的技术和策略。
  3. 复杂任务和创新的提示工程:探索能够解锁更深层次能力和创造潜力的高级提示方法。

1. 基础转变:从一般理解到领域效能

初始范式:基本需求理解

在与大语言模型交互的早期阶段(对于如今的许多普通用户也是如此),主要目标往往只是让模型理解核心请求并生成相关、连贯的输出。这包括:

  • 简单指令:“写一封电子邮件”、“总结这个内容”、“回答这个问题”。
  • 用户对模糊性的容忍度:用户可能会接受不太精确的输出,或者经过多次迭代来获取所需内容,重点关注大语言模型把握主题意图的能力。
  • 关注通用知识和创造力:应用通常是内容生成、头脑风暴、基于大语言模型大量预训练数据的简单查询回答。
  • 评估指标:基本的相关性、流畅性、连贯性以及是否解决了明确的请求。

转变过程:认识到局限性和潜力

用户(尤其是专业人士和研究人员)很快意识到通用模型在处理专业任务时的局限性。虽然大语言模型可以写一封电子邮件,但它能分析特定的法律条文吗?它能在合成生物学中提出一个新颖的实验吗?它能在专有的框架中调试复杂的代码吗?使用简单提示时,答案往往是“不能”或“不可靠”。

这种认识激发了人们超越对一般需求的简单理解,转而将大语言模型作为在特定高价值场景中强大工具的渴望。问题变成了:我如何让这种通用智能准确可靠地执行专业工作呢?

当前/不断演变的范式:最大化领域有效性

这种范式转变的特点是:

  • 深入、特定的需求:用户不仅仅是要求生成文本,他们要求进行分析、综合、解决问题、生成假设,或者生成符合领域标准的结构化输出。
  • 关注准确性和可靠性:错误(幻觉)更难以容忍。输出必须在事实上正确,在领域内的上下文中合适,并且根据领域原则在逻辑上合理。
  • 与领域知识的整合:大语言模型需要访问或能够有效利用专门的、通常是专有的或快速变化的领域信息,而这些信息在其预训练数据中并未完全涵盖。
  • 大语言模型作为领域增强工具:该模型不被视为人类专业知识的替代品,而是作为一种助手、加速器或副驾驶,在领域内增强人类的能力。
  • 评估指标:特定领域的准确性、对标准的遵循程度、在解决领域问题方面的实用性、效率提升、生成见解的新颖性。

这种转变需要用户方法的根本性改变——从简单地陈述需求到积极引导大语言模型,提供上下文,利用外部知识,并构建交互结构以引出适合领域的回复。

2. 在专业领域中最大化大语言模型的有效性

实现高效能需要一种多方面的方法,将用户专业知识、数据策略和复杂的交互技术相结合。这是关于在大语言模型的通用能力与特定专业领域的细微差别之间架起一座桥梁。

领域效能的核心原则

  • 用户作为领域专家:大语言模型是一种工具。用户提供关键的领域上下文,引导过程,并对输出进行严格评估。
  • 知识增强:大语言模型的内部知识虽然广泛,但具有静态性且不够特定于领域。必须整合外部的、动态的领域知识。
  • 过程结构化:复杂的领域任务很少是单步提示就能完成的。它们需要分解为逻辑序列,利用大语言模型遵循指令和执行中间步骤的能力。
  • 情境化:提供足够的、相关的特定领域上下文至关重要。

关键策略和技术

(A)利用领域知识

  • 上下文学习(通过提示)
    • 少样本学习:提供来自您所在领域的输入-输出对示例。这对于向大语言模型展示所需的风格格式逻辑非常有效。
      • 示例(医学研究):提示包括:“输入:患者持续咳嗽、疲劳并低热3周。胸部X光显示有浸润影。输出:鉴别诊断:非典型肺炎(支原体、衣原体)、肺结核、真菌感染(组织胞浆菌病、球孢子菌病)。基于输入的理由:症状为亚急性,符合非典型感染。X光结果非特异性,但与这些病症的浸润影相符。” 接着是需要分析的实际患者病例。
    • 定义术语:如果提示中可能存在模糊或需要特定解释的特定领域术语、首字母缩写或概念,则明确对其进行定义。
      • 示例(法律):“在这种情况下,‘不可抗力’是指[插入具体合同定义]。分析以下事件[描述事件],并根据此定义确定它是否构成不可抗力事件。”
    • 提供标准和指南:包括来自行业标准、法规或内部指南的相关片段。
      • 示例(软件工程):“在为这个函数[插入函数]编写单元测试时,遵循以下测试指南[插入指南片段,例如测试覆盖率要求、命名约定、模拟使用策略]。”
  • 检索增强生成(RAG):这可能是实现领域效能最重要的技术策略,特别是在信息快速更新或存在专有数据的领域。
    • 机制:系统不是仅依赖大语言模型的预训练权重,而是首先根据用户的查询从特定领域的语料库中检索相关文档、数据片段或知识图谱条目。然后,大语言模型根据原始提示检索到的信息生成回复。
    • 提示在RAG中的作用:提示的结构和清晰度直接影响检索信息的质量(因为提示通常用作检索系统的查询),以及大语言模型如何利用这些信息。像“分析提供的文档以回答……”或“综合这些来源的信息以……”这样的明确指令至关重要。
    • 示例(财务分析):用户希望根据公司最新的季度报告分析其财务健康状况。
      • 语料库:公司的历史报告、行业基准、相关新闻文章。
      • 提示:“基于提供的2023年第三季度财务报告[检索到的文档1]和2022年第三季度报告[检索到的文档2],分析收入、毛利率和净利润的同比变化。根据检索到的新闻文章[检索到的文档3、4]讨论重大变化的潜在原因。将该公司的毛利率与提供的行业基准[检索到的数据片段]进行比较,展示分析结果。”
      • 有效性原因:大语言模型不是猜测,而是使用特定、最新且相关的财务数据和背景新闻进行分析。
  • 微调(补充技术):虽然不是提示工程,但微调涉及在特定领域数据集上对大语言模型进行进一步训练。这可以帮助模型更好地理解领域行话、概念之间的典型关系,并以特定风格生成输出。它通常与RAG和高级提示结合使用。
    • 示例(医疗保健):在电子健康记录(EHR)和医学文献上进行微调,以提高模型理解临床笔记和生成摘要的能力。

(B)构建特定领域任务(利用提示技术)

  • 角色扮演:指示大语言模型在领域内采用特定的角色。这有助于限制回复的风格、语气和视角。
    • 示例(咨询):“扮演一名专注于可再生能源领域市场进入的高级战略顾问。分析一家新的太阳能电池板制造商进入[特定国家]市场的潜在挑战和机会。以项目符号列表的形式组织你的回复。”
  • 分步指令和分解:将复杂的领域任务分解为一系列较小的、逻辑的步骤,让大语言模型遵循。
    • 示例(材料科学模拟规划):“规划一个用于研究锂离子在固体电解质中扩散的分子动力学模拟。
      1. 首先,确定所需的关键材料成分及其力场参数。
      2. 其次,定义系统设置(盒子大小、边界条件、粒子数量)。
      3. 第三,指定模拟参数(温度、压力、模拟长度、时间步长、恒温器/恒压器)。
      4. 第四,概述计算扩散系数所需的数据分析步骤(例如,均方位移计算)。”
    • 这利用了类似于思维链(CoT)的技术,但由用户根据领域工作流程明确构建。
  • 限制输出格式和内容:要求输出符合特定的领域标准(例如,用于数据交换的JSON格式、Markdown表格、特定的报告部分、特定语言/风格的代码)。
    • 示例(生物化学):“提供以下所述酶动力学研究的摘要[插入摘要/方法],重点关注米氏常数(Km)和最大反应速率(Vmax)值。以Markdown表格的形式呈现结果,列包括:酶、底物、Km(单位)、Vmax(单位)、条件。”

(C)评估和迭代

  • 人类专业知识至关重要:鉴于对准确性的需求,人类专家必须根据领域的真实情况、逻辑和标准来验证大语言模型的输出。
  • 迭代提示优化:根据评估结果,用户优化提示,提供更多上下文,澄清指令,或添加更具体的示例,以提高大语言模型在后续尝试中的性能。这是一个持续的循环。

展示效能的具体领域示例

  1. 法律领域(合同审查)
    • 目标:根据内部法律指南,识别合同草案中的特定条款和潜在风险。
    • 提示:“审查所附的合同草案[插入合同文本]。扮演一名专注于数据隐私法的合规官。识别所有与数据处理、存储和第三方共享相关的条款。对于每个识别出的条款,根据提供的内部政策片段[插入政策片段]评估其合规性。标记任何看似模糊、可能不合规或需要进一步审查的条款,并根据提供的政策解释你的理由。”
    • 效能:超越了简单的总结,实现了复杂的模式匹配、规则应用(政策比较)、风险识别,并在关键的领域背景下进行结构化报告。RAG(政策片段)和角色扮演是关键。
  2. 制药研发(文献综合)
    • 目标:综合多篇研究论文的结果,以了解特定药物靶点的研究现状并识别知识空白。
    • 提示:“分析以下研究论文摘要[插入摘要]。专注于研究[药物靶点X]与[蛋白质Y]相互作用的研究。对于每项研究,确定使用的实验方法、关于结合亲和力或功能相互作用的关键发现,以及任何报告的副作用或局限性。将这些发现综合成一个简短的概述,并根据综合信息明确列出潜在的知识空白或需要进一步研究的领域。”
    • 效能:需要复杂的信息提取、跨多个来源的综合以及批判性分析以识别空白——这些是科学研究的核心任务,但非常耗时。隐含地依赖大语言模型理解生物化学概念和实验方法,并由提供的文本进行增强。
  3. 城市规划(政策分析)
    • 目标:根据现有法规分析拟议的分区变更,并预测对城市发展趋势的潜在影响。
    • 提示:“鉴于拟议的分区变更[插入拟议文本]和现有的市政分区法规部分[插入法规文本],扮演一名城市规划分析师。
      1. 识别拟议变更与现有法规之间的具体冲突或不一致之处。
      2. 根据这些变更,假设对受影响区域的建筑密度、允许的商业类型和开放空间要求可能产生的影响。
      3. 讨论潜在的次要影响,例如交通流量的变化或对公共服务的需求变化,并参考标准城市规划原则证明你的观点。”
    • 效能:在特定领域的法规背景下,结合了规则比较、空间推理(假设物理影响)以及理论知识(规划原则)的应用。

这些示例突出表明,领域效能不仅仅是大语言模型了解某个领域的知识,而是能够在用户的专业知识以及构建任务、提供上下文和整合外部知识的复杂提示的指导下,对领域数据和概念执行操作

3. 复杂任务和创新的提示工程

除了使大语言模型在某个领域中有效运行之外,高级提示工程技术还可以解锁处理真正复杂、多步骤推理任务的能力,并通过利用大语言模型的涌现能力和广阔的潜在知识空间来促进创新。

复杂任务

复杂任务通常涉及逻辑推理、多步骤问题解决、情景分析或整合需要不止一个直接查询的不同信息。

  • 思维链(CoT)提示
    • 机制:添加诸如“让我们逐步思考”、“逻辑地解决这个问题”之类的短语,或者像上述领域效能示例中那样明确列出步骤。这鼓励大语言模型将问题分解为中间推理步骤,这些步骤被标记化并处理。
    • 工作原理:迫使模型为推理过程本身分配计算资源(标记),使中间步骤可见,并允许比直接的端到端生成更复杂的逻辑。它还可以帮助识别模型推理出错的地方。
    • 示例(复杂物理问题):“一个质量为m的物块在倾角为θ的斜面上。动摩擦因数为μ_k。对物块施加一个水平力F。让我们逐步找到物块的加速度。
      1. 绘制受力分析图并识别作用在物块上的所有力。
      2. 选择一个坐标系(例如,倾斜轴)。
      3. 在x和y方向上写下牛顿第二定律(ΣF = ma)。
      4. 求解加速度‘a’的方程。”
    • 复杂性原因:需要应用物理原理、矢量分解和求解联立方程——这是一个多步骤过程。
  • 思维树(ToT)提示(更高级)
    • 机制:通过从给定状态探索多个潜在的推理路径来扩展CoT。在每个步骤中,模型生成多个“想法”或中间步骤,并且这些路径会被评估或修剪。需要更复杂的提示或外部控制逻辑。
    • 工作原理:允许探索不同的假设,评估替代方案,并比单个线性的CoT更有效地处理组合问题。对于规划、创意写作或复杂决策模拟很有用。
    • 示例(战略规划模拟):“模拟一家公司推出新产品的微观经济情景。
      • 初始状态:公司A以价格 P 1 P_1 P1、营销预算 M 1 M_1 M1推出产品X。
      • 步骤1:竞争对手公司B可能的3种即时反应是什么?(例如,忽视、降价、推出竞争产品)。
      • 步骤2:对于公司B的每种反应,公司A可能采取的2种反制措施是什么?
      • 步骤3:对于步骤2中的每个结果,可能的短期市场影响是什么(例如,市场份额变化、价格战)?
      • 探索最可能的路径并总结潜在结果。”
    • 复杂性原因:需要探索一系列分支可能性并评估每个路径——这是战略思维或规划的典型特征。
  • 自一致性提示
    • 机制:针对同一查询多次提示大语言模型,通常使用CoT或起始点的变体。然后,根据不同推理路径中的多数结果选择最终答案。
    • 工作原理:降低了由于单个错误推理路径导致错误的可能性。利用了模型可以生成的多种解决方案。
    • 示例(复杂逻辑推理):用CoT提示的轻微变化(“逐步思考”、“给我讲讲你的推理过程”、“首先,考虑……然后……”)多次询问同一个复杂的谜语或逻辑谜题。比较每次尝试生成的最终答案,并选择最常见的那个。
  • 生成知识提示
    • 机制:首先提示大语言模型生成关于某个主题的背景知识或相关事实,然后使用生成的知识来回答原始问题。
    • 工作原理:可以帮助将答案建立在相关概念的基础上,特别是对于需要综合广泛信息的问题。与RAG不同,知识是由大语言模型自身生成的,而不是从外部来源检索的。
    • 示例(历史分析):“首先,简要解释导致法国大革命的关键政治和经济因素。然后,基于这些因素,分析三级会议在引发革命初始阶段中的作用。”

创新

用于创新的提示工程侧重于利用大语言模型的创造能力、连接不同想法的能力以及生成新颖概念或观点的能力。

  • 在约束/视角下进行头脑风暴
    • 机制:在特定约束条件下或从不同寻常的视角请求创意。
    • 示例(产品设计):“为液体饮料的可持续包装材料集思广益10个新颖的想法。考虑可生物降解、生产成本效益高且对消费者有吸引力的材料。同时像材料科学家、环保活动家和营销专家一样思考。”
    • 创新性原因:迫使模型在特定边界内运作,并综合潜在冲突的视角,从而产生不太传统的想法。
  • 类比和隐喻生成
    • 机制:请求使用来自不相关领域的类比进行解释或比较。
    • 示例(向孩子解释机器学习):“用一个孩子学习识别动物的类比来解释机器学习模型如何学习识别猫的图片。”
    • 创新性原因:促进跨领域理解,并通过不同视角看待问题,可能会激发新的见解。
  • 假设生成
    • 机制:要求大语言模型对观察到的现象提出解释或预测结果。
    • 示例(社会科学研究):“基于以下显示[描述趋势]的调查数据,提出三个不同的社会学假设来解释这一观察结果。对于每个假设,提出一种检验方法。”
    • 创新性原因:利用大语言模型在数据中发现模式和关系(即使是相关性而非因果关系)的能力,并形成可测试的想法。
  • 模拟和情景探索
    • 机制:使用角色扮演和分步模拟提示来探索复杂的动态系统或交互。
    • 示例(文学分析/创意写作):“模拟哈姆雷特和麦克白之间关于野心本质的辩论。根据他们各自的戏剧,每个角色会提出什么论点?捕捉他们独特的声音和哲学。”
    • 创新性原因:通过在定义的约束(角色性格、戏剧主题)内模拟交互,创造出以前不存在的新颖内容,探索各种可能性。
  • 对抗性提示以提高稳健性/创造力
    • 机制:有意尝试“打破”大语言模型或挑战其假设,以了解其局限性或探索边缘情况。也可用于创造性目的,例如要求大语言模型反驳一个被广泛接受的观点。
    • 示例(工程设计评审):“你刚刚设计了系统Z。现在,扮演一个持怀疑态度、高度挑剔的同行评审者。列出系统Z可能出现故障或性能不佳的所有可能故障模式、边缘情况以及与外部因素的潜在交互。”
    • 创新性原因:通过主动寻找问题,提高设计的稳健性并暴露盲点。

通过提示展示复杂性和创新的具体示例

  1. 复杂任务(化学合成规划)
    • 目标:在给定起始材料和常用试剂的情况下,设计目标分子的可行多步合成路线。
    • 提示:“为[插入目标分子结构/SMILES]设计一个可行的化学合成路线。你可以从常见的实验室试剂和简单前体(例如苯、简单烷烃、常见官能团、标准无机试剂)开始。逐步思考,列出每个反应、所需试剂、大致条件(例如溶剂、温度)以及中间产物结构。如果某个步骤具有挑战性,提出潜在的替代方案或保护基团。在相关情况下确保考虑立体化学。”
    • 复杂性:需要有机反应机理知识、逆合成原理、反应条件以及处理立体化学知识——这是一个高度顺序性和条件性的推理过程。思维链(CoT)在此至关重要。
  2. 创新(跨学科概念生成)
    • 目标:通过借鉴生物系统,生成改进可再生能源存储技术的新颖想法。
    • 提示:“通过从生物系统中获取灵感,集思广益改进能量存储机制(如电池或超级电容器)的新颖概念。
      1. 首先,列出几种以高效能量捕获、存储或转移而闻名的生物过程(例如光合作用、三磷酸腺苷(ATP)合成、脂肪储存、神经冲动传导)。
      2. 对于确定的每个生物过程,从概念层面描述其核心机制。
      3. 现在,对于每个机制,进行类比或提出如何将类似原理应用或改编到工程合成能量存储系统中的方法。思考结构、材料、反应途径或能量转移策略。
      4. 至少提出5个独特且可能具有创新性的想法。”
    • 创新性:明确提示在截然不同的领域(生物学和工程学)之间进行类比思考,旨在找到受生物启发的技术挑战解决方案。结合了生成知识(列出生物过程)和类比推理。
  3. 复杂任务(调试和重构)
    • 目标:不仅修复错误,还要提出改进代码结构和效率的建议。
    • 提示:“分析以下为[描述函数目的]设计的Python函数[插入代码]。它目前产生以下错误[插入追溯信息]。
      1. 首先,根据代码和追溯信息解释错误的根本原因。
      2. 其次,提供修复错误的函数修正版本。
      3. 第三,严格审查修正后的函数,查找潜在的低效率、可读性差或不符合最佳实践的地方。
      4. 第四,提出一个重构版本的函数,解决步骤3中发现的问题,并解释为什么你的重构改进了代码。”
    • 复杂性:从简单的错误纠正转向更深入的代码分析、根据隐含标准(最佳实践)进行评估以及生成性重构——这是一个需要不同类型推理的多层任务。

这些示例表明,高级提示通过明确引导大语言模型的认知过程(思维链、思维树)、同时利用其多种内部能力(角色扮演、头脑风暴)以及整合外部约束或知识,将大语言模型从简单的问答系统转变为推理引擎、创意伙伴和解决复杂问题的强大工具。

4. 综合:理解、领域、复杂性和创新的相互作用

从简单的“理解需求”到“最大化领域效能”的转变,从根本上是由对高级提示工程技术的掌握所推动的。

  • 基本理解依赖于简单、直接的提示。
  • 最大化领域效能依赖于以下提示:
    • 注入特定领域的上下文和知识(少样本学习、定义、检索增强生成)。
    • 根据领域工作流程构建任务(分步、分解)。
    • 将输出限制在领域标准内(格式约束)。
    • 引导大语言模型采用领域视角(角色扮演)。
  • 在一个领域内完成复杂任务,需要将特定领域的提示与通用的复杂推理技术(适应领域问题的思维链、思维树、自一致性)相结合。
  • 推动创新通常涉及将复杂推理技术(思维树、模拟、假设生成)或创造性提示策略(类比、在约束下进行头脑风暴)应用于特定领域的挑战或知识。

本质上,随着用户变得更加成熟,他们的“需求”从简单的信息检索或内容生成,演变为要求大语言模型作为智能代理,在其专业领域内执行复杂、准确和新颖的工作。提示工程,特别是与检索增强生成等知识增强策略相结合时,是关键的接口,使用户能够指定这些复杂需求并引导大语言模型满足这些需求。

5. 挑战与未来展望

尽管这种范式非常强大,但它也带来了重大挑战:

  • 准确性和可靠性(幻觉问题):尽管有检索增强生成和提示技术,大语言模型仍然可能生成错误信息,尤其是在高度细分或说明不明确的领域。验证输出需要人类专家投入大量时间。
  • 数据要求:有效的检索增强生成需要构建和维护相关的高质量特定领域数据语料库。微调需要大量经过整理的数据集。
  • 提示工程技能:编写有效的高级提示是一种技能,需要实践、领域知识以及对大语言模型能力和局限性的理解。复杂的提示可能很脆弱。
  • 计算成本:复杂提示或检索增强生成所需的更长上下文窗口,以及自一致性等技术的多次调用,会增加计算成本和延迟。
  • 动态领域知识:在快速发展的领域中,保持检索增强生成语料库和微调模型的更新是一项持续的挑战。
  • 伦理考量:训练数据或检索中的偏差可能导致特定领域输出的偏差(例如医疗偏差、法律偏差)。确保领域应用中的公平性和安全性至关重要。在检索增强生成中使用的敏感领域数据的隐私保护至关重要。
  • 评估复杂性:自动评估复杂的特定领域输出的正确性和质量非常困难,通常需要专家人工审核。

未来展望

  • 更强大的检索增强生成:改进的检索方法、与知识图谱更好的集成,以及对检索到的文档进行多跳推理。
  • 自我修正的大语言模型:能够识别并纠正自身推理错误的模型。
  • 自动提示优化:帮助用户自动生成和优化特定领域任务提示的工具。
  • 特定领域基础模型:从一开始就针对特定领域进行更广泛训练或调整的模型。
  • 多模态领域理解:与视觉、音频或其他模态集成的大语言模型,以处理涉及多种数据类型的领域任务(例如结合患者病史分析医学图像)。
  • 大语言模型代理与编排:能够自主分解复杂领域任务、使用工具(如检索增强生成系统、数据库、应用程序编程接口)、规划多步骤行动并在人类监督下在领域内执行工作流程的大语言模型。

结论

从使大语言模型理解一般需求到在专业领域中最大限度地发挥其效能的演变,代表了人类与人工智能协作的重大进步。这种转变不仅仅是使用更大或更好的模型,而是关于改变我们与它们交互的方式

最大化领域效能需要整合外部知识(关键在于通过检索增强生成),使用分步指令和角色扮演等技术构建复杂的领域流程,并利用领域专业知识对输出进行严格评估。高级提示工程技术,如思维链、思维树和创造性头脑风暴方法,是使大语言模型能够处理复杂性、在领域约束内进行多步骤推理,并通过连接不同想法或模拟新颖情景来促进创新的关键工具。

成功驾驭这种范式转变,要求用户不仅仅是人工智能输出的消费者,而是交互的积极构建者,将深厚的领域知识与日益精通的通过复杂提示和数据策略引导和增强大语言模型的能力相结合。未来有望实现更紧密的集成和更自主的能力,但利用领域专业知识来引导通用人工智能的基本原则,仍然是在专业领域释放其真正潜力的核心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

由数入道

滴水助江海,心灯渡万世。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值