PID 控制原理与编码实现
1 前言和资料
本文是 Ros2 实时编程实践系列第三章,我们学习经典控制理论之 PID 控制算法,并着重讲解该算法的编码实现,为实现倒立摆样例做准备。掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。
本文参考资料如下:
(1)improving-the-beginners-pid-introduction
(2)Arduino-PID-Library
(3)初识PID算法
(4)啥是PID? PID可以吃吗?
(5)PID算法的理解
(6)ArduPID-Library
(7)Arduino-PID-AutoTune-Library/
2 正文
2.1 PID 深入理解
(1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,输入是空调功率,输出是内部温度。
(2)什么是 PID:英文分解开就是:比例(proportional)、积分(integral)、微分(derivative),其根据系统反馈,通过比例,积分和微分三个部分的计算,动态调整系统输入,确保被控量稳定在人们设定的目标值附近。PID 是目前最常见的应用于闭环反馈控制系统的算法,三个部分可以只用一个(P,I,D),也可以只用两个(PI,PD),也可以三个一起用(PID),非常灵活。
(3)PID 控制原理图和数学表达式:
上面的控制原理图与下面的数学表达式是相互对应的。
i
n
p
u
t
(
t
)
=
K
p
∗
e
(
t
)
+
K
i
∗
∫
e
(
t
)
d
t
+
K
d
∗
d
d
t
e
(
t
)
e
(
t
)
=
s
e
t
p
o
i
n
t
−
o
u
t
p
u
t
(
t
)
input(t) = Kp*e(t) + Ki*\int_\ e(t)dt\, + Kd * \frac{d}{dt} e(t)\\e(t) = setpoint - output(t)
input(t)=Kp∗e(t)+Ki∗∫ e(t)dt+Kd∗dtde(t)e(t)=setpoint−output(t)
setpoint 为设定值,也叫目标值;
output(t) 是系统反馈值,随时间变化;
e(t) 是设定值与反馈值的差值,由于反馈总是作为被减数,因此也称为负反馈控制算法;
Kp 是比例系数,Kp * e(t) 就是 PID 的比例部分;
Ki 是积分系数,Ki 乘以 e(t) 对时间的积分,就是 PID 的积分部分;
Kd 是微分系数,Kd 乘以 e(t) 对时间的微分,就是 PID 的微分部分。
通常情况下,三个系数都是正数,但三个部分正负号并不一定相同,相互之间有抵消和补偿。三个部分之和,就是系统输入值 input(t)。整个控制系统的目标就是让差值 e(t) 稳定到 0。
(4)以恒温水池为例,讲解 PID 的三个部分:其中 input(t) 为加热功率,output(t) 为水池温度,setpoint 假设为 36 度, e(t) 为 setpoint 与当前温度的差值。
比例部分:比例部分最直观,也比较容易理解,举例而言:假设当前水温为 20 度,差值 e 为 36 - 20 = 16 度,乘上比例系数 Kp ,得到加热功率,于是温度就会慢慢上涨;如果水温超过了设定温度,比如 40 度,差值 e 为 36 - 40 = -4 度,则停止加热,让热量耗散,温度就会慢慢下降。
微分部分:只有比例部分,我们可以想象出水池温度的变化通常会比较大,而且很难恒定,这样的水池不能算是恒温水池。解决办法是引入差值 e(t) 的微分,也就是 e(t) 对时间的导数。通过数学计算,可得导数为水池温度的斜率负数:
d
d
t
e
(
t
)
=
d
d
t
(
s
e
t
p
o
i
n
t
−
o
u
t
p
u
t
(
t
)
)
=
−
d
d
t
o
u
t
p
u
t
(
t
)
=
−
(
o
u
t
p
u
t
(
n
)
−
o
u
t
p
u
t
(
n
−
1
)
)
/
Δ
(
t
)
\frac{d}{dt} e(t) = \frac{d}{dt} (setpoint - output(t)) = - \frac{d}{dt} output(t) = - (output(n) - output(n-1)) / \Delta(t)
dtde(t)=dtd(setpoint−output(t))=−dtdoutput(t)=−(output(n)−output(n−1))/Δ(t)
根据求导结果,我们分两种情况讨论微分部分对比例部分的作用:
当差值 e(t) 扩大时:微分部分将与比例部分同正负号,对比例部分进行补偿,更好的抑制差值扩大;
当差值 e(t) 缩小时:微分部分将与比例部分异号,对比例部分进行抵消,防止系统输出过冲。
综合两种情况,可以认为微分部分提供了一种预测性的调控作用,通过考虑差值 e(t) 的未来走势,更精细地调整系统输入,从而让系统输出逐渐收敛到目标值。
积分部分:只有比例和微分部分,在某些场景下会失灵。举例而言,假如我们只使用 PD 算法。此时水池的室外温度非常低,热量散失非常快。当加热到某个温度的时候(比如 30 度),温度可能再也无法上涨。这种情况,称之为系统的稳态误差。我们分两部分解释原因:
比例部分:由于差值 e(t) 不那么大了,比例部分会比较小,每次增加的热量正好被耗散掉,因此温度不会继续上升;
微分部分:由于温度基本恒定,微分部分将约为零,也无法对比例部分进行补偿。
解决办法是引入差值 e(t) 的积分,也就是 e(t) 乘以单位时间并不断累加,数学表达式如下:
∫
e
(
t
)
d
t
=
∑
(
s
e
t
p
o
i
n
t
−
o
u
t
p
u
t
(
t
)
)
∗
t
\int_\ e(t)dt\, = \sum(setpoint - output(t)) * t
∫ e(t)dt=∑(setpoint−output(t))∗t
假设温度停在了 30 度,不再上升,此时,积分部分会随着时间的推移而不断增加,相当于对比例部分进行补偿,从而增加加热功率,最终温度将继续上升。
下面的动图比较形象地展示了三个参数对系统输出的影响:
(5)PID 为什么被称为启发式控制算法:
第一,PID 的三个参数并非基于严格的数学计算得到,而是靠工程师的直觉和经验。
第二,PID 算法调参的目标是可用,只要实际效果不错就行,并不追求最优解。
第三,PID 不依赖精确的数学模型,就能进行有效的控制。因此看起来更像是一种基于实践和实际效果的启发式方法,而不是一个理论上推导出来的控制策略。
(6)介绍一种 PID 调参方法:Ziegler-Nichols(齐格勒-尼科尔斯)最终值振荡法
第一,将微分系数 Kd 和积分系数 Kp 都设置为 0,只保留比例系数。
第二,不断增加比例系数,直到达到无衰减的持续振荡,此时的比例系数称为 Ku ,此时的振荡周期为 Tu。
第三,使用临界系数和振荡周期设置 PID 参数:
比例系数:Kp = 0.60 * Ku
积分系数:Ki = 2 * Kp / Tu
微分系数:Kd = Kp * Tu / 8
2.2 PID 编码实现
这部分我们主要参考 Arduino 的 PID 库 Arduino-PID-Library,分八步实现一个实际可用的 PID 算法库。由于每一步都依赖前一步的知识,请读者逐步阅读。
特别提示:由于本节讲解 PID 的实现,我们将以 PID 作为第一视角,如果提到 input ,指的是 PID 算法输入,相当于上节中的系统输出 output(t),即恒温水池的温度;如果提到 ouput,指的是 PID 算法输出,相当于上节中的系统输入 input(t),即加热功率。
2.2.1 初始版本
代码实现 PID 算法,面临最大的困惑是如何实现积分和微分。正如上一节所说,积分可转化为差值 e(t) 乘以采样间隔并不断累加;微分可转换为求两次采样的差值 e(t) 的斜率。于是有了如下代码,请读者关注代码注释(可以直接拿去跑)。
#include <iostream>
#include <chrono>
#include <thread>
class PIDController {
public:
explicit PIDController() {
InitTime();
}
// 构造函数,初始化 PID 控制器的三个参数和系统初始时间
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
// Compute 是 PID 控制器的核心函数,根据设定值和算法输入值计算输出值
double Compute(double setpoint, double input) {
uint64_t now = GetMillis();
// 两次采样间隔
double time_change = static_cast<double>(now - last_time_);
// 差值 error
double error = setpoint - input;
printf("error: %f\n", error);
// 积分部分
err_sum_ += error * time_change;
// 微分部分
double derivative = (error - last_error_) / time_change;
// 三个部分相加得到算法输出值
double output = kp_ * error + ki_ * err_sum_ + kd_ * derivative;
// 保存当前值,供下一次计算使用
last_error_ = error;
last_time_ = now;
return output;
}
// 设置 PID 控制器的三个参数
void set_tunings(double kp_para, double ki_para, double kd_para) {
kp_ = kp_para;
ki_ = ki_para;
kd_ = kd_para;
}
private:
double kp_; // 比例系数
double ki_; // 积分系数
double kd_; // 微分系数
double last_error_ = 0; // 上一次的差值 error
double err_sum_ = 0; // 积分部分
uint64_t last_time_ = 0; // 上一次的采样时间
// 获取当前时间,单位是毫秒
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
};
int main() {
PIDController pid;
pid.set_tunings(10, 0.01, 0.01);
// 假设我们控制的是一个恒温水池,我们希望将温度控制在36度,初始温度为20度
double setpoint = 36;
double temperature = 20;
// 模拟系统启动延迟
std::this_thread::sleep_for(std::chrono::seconds(1));
// 模拟控制循环
for (int i = 0; i < 100; ++i) {
// 计算控制输出,这里是加热功率
double control_signal = pid.Compute(setpoint, temperature);
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
// 模拟控制周期
std::this_thread::sleep_for(std::chrono::seconds(1));
}
return 0;
}
2.2.2 固定采样间隔
初始版本的 PID 的采样间隔是由外部循环控制的,会导致两个问题:
第一,无法获取一致的 PID 行为,因为外部有可能调用,也有可能不调用;
第二,每次都要根据采样间隔计算微分和积分部分,这涉及到浮点运算。效率比较低。
好的办法是固定采用间隔,两个问题都能解决,看下面的代码以及注释(可以直接拿去跑)。
#include <iostream>
#include <chrono>
#include <thread>
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
// 设置 PID 控制器的三个参数,由于固定了采样时间,因此可以提前计算好 ki 和 kd,而不必每次在 Compute 函数中计算
void set_tunings(double kp_para, double ki_para, double kd_para) {
// 采样间隔,单位是毫秒,这里转换为秒。默认采样间隔是 1 秒
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
// 由于积分部分是每次差值 e 乘以采样间隔,然后累加,因此这里提前将 ki 乘以固定的采样间隔,并保存起来,数学表达式如下:
// sum = ki * (error(0) * dt + error(1) * dt + ... + error(n) * dt) = (ki * dt) * (error(0) + error(1) + ... + error(n))
ki_ = ki_para * sample_time_in_sec;
// 由于微分部分是每次差值 e 除以采样间隔,因此这里提前将 kd 除以固定的采样间隔,并保存起来,数学表达式如下:
// derivative = kd * (error(n) - error(n-1)) / dt = (kd / dt) * (error(n) - error(n-1))
kd_ = kd_para / sample_time_in_sec;
}
// 设置采样间隔,单位是毫秒
// 当设置新的采样间隔时,需要按比例重新更新 ki 和 kd,并保存新的采样间隔
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
// 计算新采样间隔和默认采样间隔的比例
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
double Compute(double setpoint, double input) {
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
// 这里注意:如果采样间隔小于设定的采样间隔,直接返回上一次的输出值,不再进行计算
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
// 积分部分
// 由于采样间隔是固定的,且提前计算并保存到了 ki_ 中,因此这里只需要累加即可
err_sum_ += error;
// 微分部分
// 由于采样间隔是固定的,且提前计算并保存到了 kd_ 中,因此这里只需要计算差值即可
double derivative = error - last_error_;
// 简化后的计算表达式,省去了每次的采样间隔的浮点计算
double output = kp_ * error + ki_ * err_sum_ + kd_ * derivative;
last_error_ = error;
last_time_ = now;
// 由于采样间隔是固定的,当实际采样间隔小于设定的采样间隔时,直接返回上一次的输出值,因此每次计算后都需要保存当前值
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_error_ = 0.0;
double err_sum_ = 0.0;
uint64_t last_time_ = 0UL;
// 保存上一次的输出值,当实际采样间隔小于设定的采样间隔时,直接返回上一次的输出值
double last_output_ = 0.0;
// 默认采样间隔是 1 秒
uint64_t sample_time_ = 1000UL; // 1 second
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
};
int main() {
PIDController pid;
pid.set_tunings(1, 0.2, 0.02);
pid.set_sample_time(1000); // Set sample time to 1 second
// 假设我们控制的是一个恒温水池,我们希望将温度控制在36度,初始温度为20度
double setpoint = 36;
double temperature = 20;
std::this_thread::sleep_for(std::chrono::seconds(1));
for (int i = 0; i < 1000; ++i) {
double control_signal = pid.Compute(setpoint, temperature);
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
// 由于内部采样间隔固定为 1 秒,因此这里加快了计算周期
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
2.2.3 消除 spike
spike 的英文含义是尖刺,这里指的是当系统运行过程中,突然改变 setpoint 时, PID 的微分部分会因 setpoint 的突然切换而生成一个极大的导数,导致算法输出值 output 将产生一次急剧变化,这就是 spike。比如恒温水池的初始 setpoint 是 36 度,运行过程中,突然改为 50 度。相当于在一个采样周期内,差值 error 突然增加了 14 ,再除以采样周期,数值将会非常大,如下图所示。
解决办法是将 setpoint 从 PID 的微分部分请出去,理论依据是:差值 error 的导数也是算法输入(恒温水池的温度)的斜率负数:
K
d
∗
d
d
t
e
r
r
o
r
=
K
d
∗
d
d
t
(
s
e
t
p
o
i
n
t
−
i
n
p
u
t
)
=
K
d
∗
(
−
d
d
t
i
n
p
u
t
)
=
(
−
K
d
/
Δ
(
t
)
)
(
i
n
p
u
t
(
n
)
−
i
n
p
u
t
(
n
−
1
)
)
Kd * \frac{d}{dt} error = Kd * \frac{d}{dt} (setpoint - input) = Kd * (- \frac{d}{dt} input) = (- Kd / \Delta(t) ) (input(n) - input(n-1))
Kd∗dtderror=Kd∗dtd(setpoint−input)=Kd∗(−dtdinput)=(−Kd/Δ(t))(input(n)−input(n−1))
代码实现如下(看注释部分)
#include <iostream>
#include <chrono>
#include <thread>
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
void set_tunings(double kp_para, double ki_para, double kd_para) {
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
ki_ = ki_para * sample_time_in_sec;
kd_ = kd_para / sample_time_in_sec;
}
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
double Compute(double setpoint, double input) {
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
err_sum_ += error;
// 由于差值 error 的导数也是算法输入的斜率负数,因此这里直接使用算法输入 input 计算微分部分
double derivative = input - last_input_;
// 由于差值 error 的导数也是算法输入的斜率负数,因此微分部分的符号是负数
double output = kp_ * error + ki_ * err_sum_ - kd_ * derivative;
// 由于差值 error 不再参与微分部分的计算,而是直接使用算法输入 input,因此这里不再保存 error,而是保存 input
last_input_ = input;
last_time_ = now;
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_input_ = 0.0;
double err_sum_ = 0.0;
uint64_t last_time_ = 0UL;
double last_output_ = 0.0;
uint64_t sample_time_ = 1000UL; // 1 second
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
};
int main() {
PIDController pid;
pid.set_tunings(1, 0.2, 0.02);
pid.set_sample_time(1000);
// 假设我们控制的是一个恒温水池,我们希望将温度控制在36度,初始温度为20度
double setpoint = 36;
double temperature = 20;
std::this_thread::sleep_for(std::chrono::seconds(1));
for (int i = 0; i < 1000; ++i) {
double control_signal = pid.Compute(setpoint, temperature);
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
// 系统运行过程中,突然将目标温度从 36 度调整到 50 度
if (i == 200) {
setpoint = 50;
std::cout << "Setpoint changed to 50" << std::endl;
}
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
2.2.4 动态改参
好的 PID 算法,允许在系统运行过程中,调整 PID 参数。问题的关键是,运行中途修改 PID 参数,如何保持算法输出仍然平稳,对系统状态不产生额外冲击。
仔细分析 PID 的三个部分,当对应的参数改变时,影响最大的是积分部分,比例和微分两部分都只影响当前值,而积分部分将会更改历史值。
o
u
t
p
u
t
=
K
p
∗
e
r
r
o
r
+
K
i
∗
∫
e
r
r
o
r
d
t
+
K
d
∗
d
d
t
e
r
r
o
r
output = Kp*error + Ki*\int_\ errordt\, + Kd * \frac{d}{dt} error
output=Kp∗error+Ki∗∫ errordt+Kd∗dtderror
解决办法是放弃先计算积分和,最后乘以积分系数的做法,而是让积分系数参与每一次积分运算并累加起来:
K
i
∗
∫
e
r
r
o
r
d
t
=
K
i
∗
∑
(
s
e
t
p
o
i
n
t
−
i
n
p
u
t
)
∗
t
=
∑
(
(
K
i
∗
t
)
∗
(
s
e
t
p
o
i
n
t
−
i
n
p
u
t
)
)
Ki * \int_\ errordt\, = Ki * \sum (setpoint - input) * t = \sum ((Ki * t) *(setpoint - input))
Ki∗∫ errordt=Ki∗∑(setpoint−input)∗t=∑((Ki∗t)∗(setpoint−input))
如此一来,即使更新了积分参数,也只影响当前值,历史值由于被存储起来,因此不会改变,代码实现如下(看注释部分)。
#include <iostream>
#include <chrono>
#include <thread>
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
void set_tunings(double kp_para, double ki_para, double kd_para) {
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
ki_ = ki_para * sample_time_in_sec;
kd_ = kd_para / sample_time_in_sec;
}
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
double Compute(double setpoint, double input) {
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
// 改变积分部分的计算方式,直接累加 ki * error
err_item_sum_ += ki_ * error;
double derivative = input - last_input_;
// 积分部分改为累加 ki * error,这里直接使用累加值
double output = kp_ * error + err_item_sum_ - kd_ * derivative;
last_input_ = input;
last_time_ = now;
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_input_ = 0.0;
// 由于积分部分改为累加 ki * error,因此不再保存 error 和(err_sum_),而是保存 ki * error 的和(err_item_sum_)
double err_item_sum_ = 0.0;
uint64_t last_time_ = 0UL;
double last_output_ = 0.0;
uint64_t sample_time_ = 1000UL; // 1 second
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
};
int main() {
PIDController pid;
pid.set_tunings(1, 0.2, 0.02);
pid.set_sample_time(1000);
// 假设我们控制的是一个恒温水池,我们希望将温度控制在36度,初始温度为20度
double setpoint = 36;
double temperature = 20;
std::this_thread::sleep_for(std::chrono::seconds(1));
for (int i = 0; i < 1000; ++i) {
double control_signal = pid.Compute(setpoint, temperature);
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
// 系统运行过程中,调整控制器参数
if (i == 200) {
pid.set_tunings(1, 0.5, 0.02);
std::cout << "PID coefficients changed, 1, 0.2, 0.02 ->1, 0.5, 0.02" << std::endl;
}
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
2.2.5 设置算法输出限制
通常情况下,PID 算法输出是有一定限制的,比如恒温水池的加热功率不可能无限大,更不可能小于零。当 PID 的算法输出为负数时,实际是停止加热,也就是功率为零。因此需要给 PID 算法添加限制范围,代码实现如下(看注释部分)。
补充:为了看到输出限制的作用,这次我们把目标温度定为 90 度。
#include <iostream>
#include <chrono>
#include <thread>
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
void set_tunings(double kp_para, double ki_para, double kd_para) {
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
ki_ = ki_para * sample_time_in_sec;
kd_ = kd_para / sample_time_in_sec;
}
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
// 设置 PID 算法输出的最小值和最大值
// 当最小值大于最大值时,视为参数错误,不设置
void set_output_limits(double min, double max) {
if (min > max) {
return;
}
out_min_ = min;
out_max_ = max;
// 将缓存值 last_output_ 和 err_item_sum_ 限制在最大值和最小值之间
SetLimits(last_output_);
SetLimits(err_item_sum_);
}
double Compute(double setpoint, double input) {
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
// 积分部分计算,并限制在最大值和最小值之间
err_item_sum_ += ki_ * error;
SetLimits(err_item_sum_);
double derivative = input - last_input_;
// PID 输出计算,并限制在最大值和最小值之间
double output = kp_ * error + err_item_sum_ - kd_ * derivative;
SetLimits(output);
last_input_ = input;
last_time_ = now;
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_input_ = 0.0;
double last_output_ = 0.0;
double err_item_sum_ = 0.0;
// PID 算法输出的最小值和最大值
double out_min_ = 0.0;
double out_max_ = 0.0;
uint64_t last_time_ = 0UL;
uint64_t sample_time_ = 1000UL; // 1 second
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
// 内部函数,用于重置变量在最大值和最小值之间
void SetLimits(double& val) {
if (val > out_max_) {
printf("val: %f > out_max_: %f\n", val, out_max_);
val = out_max_;
} else if (val < out_min_) {
printf("val: %f > out_min_: %f\n", val, out_min_);
val = out_min_;
} else {
; // Do nothing
}
}
};
int main() {
PIDController pid;
pid.set_tunings(1, 0.5, 0.05);
pid.set_sample_time(1000);
// 设置 PID 算法输出(加热功率)的最小值为0,最大值为100
pid.set_output_limits(0, 100);
// 假设我们控制的是一个恒温水池,我们希望将温度控制在 90 度,初始温度为20度
double setpoint = 90;
double temperature = 20;
std::this_thread::sleep_for(std::chrono::seconds(1));
for (int i = 0; i < 1000; ++i) {
double control_signal = pid.Compute(setpoint, temperature);
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
2.2.6 添加开关控制
好的 PID 算法应允许使用者动态启停,比如恒温水池运行过程中,由于某种原因,管理人员需要停掉自动控制,改为手动控制,操作结束后,重新启动自动控制。
实现动态停止并不复杂,只要 PID 内部加一个开关标识,当关闭时,PID 算法内部不执行计算,外部直接使用人工操作值替代算法输出值进行控制。
但问题的关键是,当从手动模式重新改为自动模式时,需要保证恒温水池温度不出现大的抖动,即 PID 算法能接续人类的控制状态,实现平滑过渡。
解决办法是重新初始化:当从手动切换到自动时,将水池温度和人工操作值传给 PID ,更新 PID 内部的历史输入值和历史积分值。如此一来,当 PID 重新启动时,就能接续人类的控制结果,平滑启动,如图所示。
代码实现如下(看注释部分)
#include <iostream>
#include <chrono>
#include <thread>
// PID 工具模式枚举量:手动模式和自动模式
enum PID_MODE: uint8_t {
PID_MODE_MANUAL = 0,
PID_MODE_AUTOMATIC = 1
};
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
void set_tunings(double kp_para, double ki_para, double kd_para) {
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
ki_ = ki_para * sample_time_in_sec;
kd_ = kd_para / sample_time_in_sec;
}
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
void set_output_limits(double min, double max) {
if (min > max) {
return;
}
out_min_ = min;
out_max_ = max;
SetLimits(last_output_);
SetLimits(err_item_sum_);
}
// 当从手动模式切换到自动模式时,重新初始化 PID 内部状态
// 一是更新算法输入值,确保比例和微分部分按照新的状态重新计算
// 二是更新算法积分部分的历史值,确保积分部分不会对新的算法输出产生扰动
void InitInnaState(double input, double output) {
last_input_ = input;
err_item_sum_ = output;
SetLimits(err_item_sum_);
}
// 设置 PID 控制器的工作模式:手动模式和自动模式
// 当从手动模式切换到自动模式时,需要给出新的算法输入值和输出值,用于初始化 PID 内部状态
void set_auto_mode(PID_MODE mode, double input = 0.0, double output = 0.0) {
// 当识别出模式从手动切换到自动时,初始化 PID 内部状态
bool new_auto = (mode == PID_MODE_AUTOMATIC);
if (new_auto == true && in_auto_ == false) {
InitInnaState(input, output);
}
in_auto_ = new_auto;
std::cout << "PID mode: " << (in_auto_ ? "Automatic" : "Manual") << std::endl;
}
double Compute(double setpoint, double input) {
// 当 PID 控制器处于手动模式时,直接返回上一次的输出值,外部会使用人工操作值覆盖 PID 算法的输出值
if (in_auto_ == false) {
return last_output_;
}
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
err_item_sum_ += ki_ * error;
SetLimits(err_item_sum_);
double derivative = input - last_input_;
double output = kp_ * error + err_item_sum_ - kd_ * derivative;
SetLimits(output);
last_input_ = input;
last_time_ = now;
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_input_ = 0.0;
double last_output_ = 0.0;
double err_item_sum_ = 0.0;
double out_min_ = 0.0;
double out_max_ = 0.0;
uint64_t last_time_ = 0UL;
uint64_t sample_time_ = 1000UL; // 1 second
// PID 内部状态控制量:false 表示手动模式,true 表示自动模式
bool in_auto_ = false;
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
void SetLimits(double& val) {
if (val > out_max_) {
printf("val: %f > out_max_: %f\n", val, out_max_);
val = out_max_;
} else if (val < out_min_) {
val = out_min_;
} else {
; // Do nothing
}
}
};
int main() {
PIDController pid;
pid.set_tunings(1, 0.2, 0.02);
pid.set_sample_time(1000);
pid.set_output_limits(0, 100);
// 假设我们控制的是一个恒温水池,我们希望将温度控制在 36 度,初始温度为20度
double setpoint = 36.0;
double temperature = 20.0;
std::this_thread::sleep_for(std::chrono::seconds(1));
// 初始化时,设置 PID 控制器为自动模式
pid.set_auto_mode(PID_MODE_AUTOMATIC);
for (int i = 0; i < 1000; ++i) {
// 当 i 等于 200 时,将 PID 控制器切换到手动模式
if (i == 200) {
pid.set_auto_mode(PID_MODE_MANUAL);
std::cout << "---->>> Switch to manual mode" << std::endl;
}
double control_signal = pid.Compute(setpoint, temperature);
// 切换到手动模式时,这里模拟人工的操作,人工操作值将覆盖 PID 算法的输出值
if (i >= 200 && i < 250) {
control_signal = 3;
}
if (i >= 250 && i <= 300) {
control_signal = 4;
}
std::cout << "--> Control signal: " << control_signal << std::endl;
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "<-- Temperature: " << temperature << std::endl;
// 当 i 等于 300 时,将 PID 控制器重新切换到自动模式
if (i == 300) {
pid.set_auto_mode(PID_MODE_AUTOMATIC, temperature, control_signal);
std::cout << "---->>> Switch back to automatic mode" << std::endl;
}
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
2.2.7 添加正反向控制
本文中,我们一直拿恒温水池举例,在这里例子中,PID 的输入与输出值是正相关的,即加热功率增加,温度会增加。但现实中,也有很多负相关的例子,比如冷库,制冷功率就与温度负相关,功率越大,温度下降越快。
正常情况下,我们要求 PID 的三个系数必须一致。如果是正相关的情况,三个系数同时为正即可;如果是负相关的情况,三个系数同时为负即可。因此,我们需要为 PID 添加正反向控制。
代码实现如下(看注释部分)
#include <iostream>
#include <chrono>
#include <thread>
// 添加命名空间 YCAO_PIDLIB
namespace YCAO_PIDLIB {
enum PID_MODE: uint8_t {
PID_MODE_MANUAL = 0,
PID_MODE_AUTOMATIC = 1
};
// PID 方向枚举量:正向和反向
enum PID_DIRECTION: uint8_t {
PID_DIRECT = 0,
PID_REVERSE = 1
};
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
// 设置 PID 控制器的三个参数,我们要求三个系数都大于等于0,但运行通过方向参数设置正向和反向的控制
void set_tunings(double kp_para, double ki_para, double kd_para, PID_DIRECTION direction = PID_DIRECT) {
if (kp_para < 0.0 || ki_para < 0.0 || kd_para < 0.0) {
return;
}
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
ki_ = ki_para * sample_time_in_sec;
kd_ = kd_para / sample_time_in_sec;
// 如果方向参数是反向,那么三个系数都取反,即均为负值
if (pid_direct_ == PID_REVERSE) {
kp_ = 0 - kp_;
ki_ = 0 - ki_;
kd_ = 0 - kd_;
}
}
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
void set_output_limits(double min, double max) {
if (min > max) {
return;
}
out_min_ = min;
out_max_ = max;
SetLimits(last_output_);
SetLimits(err_item_sum_);
}
void InitInnaState(double input, double output) {
last_input_ = input;
err_item_sum_ = last_output_;
SetLimits(err_item_sum_);
}
void set_auto_mode(PID_MODE mode, double input = 0.0, double output = 0.0) {
bool new_auto = (mode == PID_MODE_AUTOMATIC);
if (new_auto == true && in_auto_ == false) {
InitInnaState(input, output);
}
in_auto_ = new_auto;
std::cout << "PID mode: " << (in_auto_ ? "Automatic" : "Manual") << std::endl;
}
double Compute(double setpoint, double input) {
if (in_auto_ == false) {
return last_output_;
}
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
err_item_sum_ += ki_ * error;
SetLimits(err_item_sum_);
double derivative = input - last_input_;
double output = kp_ * error + err_item_sum_ - kd_ * derivative;
SetLimits(output);
last_input_ = input;
last_time_ = now;
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_input_ = 0.0;
double last_output_ = 0.0;
double err_item_sum_ = 0.0;
double out_min_ = 0.0;
double out_max_ = 0.0;
uint64_t last_time_ = 0UL;
uint64_t sample_time_ = 1000UL; // 1 second
bool in_auto_ = false;
PID_DIRECTION pid_direct_ = PID_DIRECT;
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
void SetLimits(double& val) {
if (val > out_max_) {
printf("val: %f > out_max_: %f\n", val, out_max_);
val = out_max_;
} else if (val < out_min_) {
printf("val: %f < out_min_: %f\n", val, out_min_);
val = out_min_;
} else {
; // Do nothing
}
}
};
}
int main() {
YCAO_PIDLIB::PIDController pid;
// 设置 PID 的三个参数都是负值,即反向控制
pid.set_tunings(1.0, 0.2, 0.02, YCAO_PIDLIB::PID_REVERSE);
pid.set_sample_time(1000);
pid.set_output_limits(-100.0, 0.0);
// 假设我们控制的是一个冷库,目标是将温度控制在 -26 度,初始温度是 30 度
double setpoint = -26.0;
double temperature = 30.0;
std::this_thread::sleep_for(std::chrono::seconds(1));
pid.set_auto_mode(YCAO_PIDLIB::PID_MODE_AUTOMATIC);
for (int i = 0; i < 1000; ++i) {
double control_signal = pid.Compute(setpoint, temperature);
// 模拟压缩机的控制,假设压缩机的热效率是 0.1,温度会损失 0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
2.2.8 不依赖差值的比例部分
前面七步,我们按照标准的 PID 数学原理,实现了一个几乎完美的 PID 算法,这种实现我们姑且称之为 PID 算法的标准版本。但是,标准版本有一个问题:控制过程中,被控量(水池温度)很难不超过设定值,尽管最后会收敛到设定值。在绝大多数情况下,这都没有问题,但有些情况下,人们就是希望被控量平滑的逐步靠近设定值,而不要超过设定值,如图所示。
标准版本的 PID 算法之所以会出现这个问题,关键就是 PID 的积分部分。当被控量首次达到设定值时,比例部分就会失效,而积分部分却累加了大量的积分值,成为曲线继续冲高的“元凶”。只要当积分部分自己内部正负累加结果为零时,积分部分才会失效。
解决的办法是给积分部分找一个“帮手”,这个帮手能在被控量首次接近设定值时,主动抵消积分部分,让曲线失去冲高的动力。按理说,微分部分作为 PID 的阻尼角色,天然适合做这个帮手。但是实践证明,只有微分部分提供阻力,是不够的。标准版本的 PID 算法很难调出这样的参数,实现上图中的效果。
于是,我们要改造比例部分,让比例部分成为微分部分的帮手。具体做法是让比例部分不再依赖差值进行计算(Proportional on Error(PonE)),改为根据算法输入的初始值进行计算(Proportional on Measurement(PonM)),数学表达式如下:
P
r
o
p
o
r
t
i
o
n
a
l
=
K
p
∗
e
r
r
o
r
=
K
p
∗
(
s
e
t
p
o
i
n
t
−
i
n
p
u
t
)
P
r
o
p
o
r
t
i
o
n
a
l
=
−
K
p
∗
(
i
n
p
u
t
−
i
n
p
u
t
i
n
i
t
)
Proportional = Kp*error = Kp * (setpoint - input)\\Proportional = -Kp * (input - input_{init})
Proportional=Kp∗error=Kp∗(setpoint−input)Proportional=−Kp∗(input−inputinit)
进一步推导可得:
P
r
o
p
o
r
t
i
o
n
a
l
=
−
K
p
∗
(
i
n
p
u
t
−
i
n
p
u
t
i
n
i
t
)
=
−
K
p
∗
[
(
i
n
p
u
t
n
−
i
n
p
u
t
n
−
1
)
+
(
i
n
p
u
t
n
−
1
−
i
n
p
u
t
n
−
2
)
+
.
.
.
+
(
i
n
p
u
t
1
−
i
n
p
u
t
i
n
i
t
)
]
=
−
K
p
∗
(
i
n
p
u
t
n
−
i
n
p
u
t
n
−
1
)
−
K
p
∗
(
i
n
p
u
t
n
−
1
−
i
n
p
u
t
n
−
2
)
−
.
.
.
−
K
p
∗
(
i
n
p
u
t
1
−
i
n
p
u
t
i
n
i
t
)
Proportional = -Kp * (input - input_{init}) \\= -Kp * [(input_{n} - input_{n-1}) + (input_{n-1} - input_{n-2}) + ... + (input_{1} - input_{init})] \\= -Kp * (input_{n} - input_{n-1}) - Kp * (input_{n-1} - input_{n-2}) - ... - Kp * (input_{1} - input_{init})
Proportional=−Kp∗(input−inputinit)=−Kp∗[(inputn−inputn−1)+(inputn−1−inputn−2)+...+(input1−inputinit)]=−Kp∗(inputn−inputn−1)−Kp∗(inputn−1−inputn−2)−...−Kp∗(input1−inputinit)
根据上面的推理结果,我们可以在 PID 算法中加一个缓存量,存储比例部分累加值。由于积分部分已经有了一个累加值,因此我们可以把两个值合在一块,这样 P-I-D 就变成了 PI-D。而合起来的 PI 部分,在被控量首次接近设定值时,就可以实现自平衡,实现上图中的控制效果。
代码实现如下(看注释部分)
#include <iostream>
#include <chrono>
#include <thread>
namespace YCAO_PIDLIB {
enum PID_MODE: uint8_t {
PID_MODE_MANUAL = 0,
PID_MODE_AUTOMATIC = 1
};
enum PID_DIRECTION: uint8_t {
PID_DIRECT = 0,
PID_REVERSE = 1
};
// PID 比例部分的两种模式,一是以测例为基础,二是以差值 error 为基础
// Proportional on Measurement(PonM)
// Proportional on Error(PonE)
enum PID_P_MODE: uint8_t {
PID_P_ON_M = 0,
PID_P_ON_E = 1
};
class PIDController {
public:
explicit PIDController() {
InitTime();
}
PIDController(double kp_para, double ki_para, double kd_para) : kp_(kp_para), ki_(ki_para), kd_(kd_para) {
InitTime();
}
void InitTime() {
last_time_ = GetMillis();
}
// 添加一个参数,用于设置 PID 比例部分的模式,默认是PID_P_ON_E
void set_tunings(double kp_para, double ki_para, double kd_para, PID_DIRECTION direction = PID_DIRECT, PID_P_MODE p_mode = PID_P_ON_E) {
if (kp_para < 0.0 || ki_para < 0.0 || kd_para < 0.0) {
return;
}
// 设置 PID 比例部分的模式
p_on_e_ = (p_mode == PID_P_ON_E);
double sample_time_in_sec = static_cast<double>(sample_time_) / 1000.0;
kp_ = kp_para;
ki_ = ki_para * sample_time_in_sec;
kd_ = kd_para / sample_time_in_sec;
if (pid_direct_ == PID_REVERSE) {
kp_ = 0 - kp_;
ki_ = 0 - ki_;
kd_ = 0 - kd_;
}
}
void set_sample_time(uint64_t new_sample_time) {
if (new_sample_time > 0) {
double ratio = static_cast<double>(new_sample_time) / static_cast<double>(sample_time_);
ki_ = ki_ * ratio;
kd_ = kd_ / ratio;
sample_time_ = new_sample_time;
}
}
void set_output_limits(double min, double max) {
if (min > max) {
return;
}
out_min_ = min;
out_max_ = max;
SetLimits(last_output_);
SetLimits(p_i_item_sum_);
}
void InitInnaState(double input, double output) {
last_input_ = input;
// 初始化时,将比例和积分两个部分的累加值设置为上一次的输出值
p_i_item_sum_ = last_output_;
SetLimits(p_i_item_sum_);
}
void set_auto_mode(PID_MODE mode, double input = 0.0, double output = 0.0) {
bool new_auto = (mode == PID_MODE_AUTOMATIC);
if (new_auto == true && in_auto_ == false) {
InitInnaState(input, output);
}
in_auto_ = new_auto;
std::cout << "PID mode: " << (in_auto_ ? "Automatic" : "Manual") << std::endl;
}
double Compute(double setpoint, double input) {
if (in_auto_ == false) {
return last_output_;
}
uint64_t now = GetMillis();
uint64_t time_change = now - last_time_;
if (time_change < sample_time_) {
return last_output_;
}
double error = setpoint - input;
printf("error: %f\n", error);
double derivative = input - last_input_;
p_i_item_sum_ += ki_ * error;
// 当比例部分的模式是 PonM 时,将比例部分与积分部分的累加值合并
if (p_on_e_ == false) {
p_i_item_sum_ -= kp_ * derivative;
}
SetLimits(p_i_item_sum_);
double output = 0.0;
if (p_on_e_ == true) {
output = kp_ * error + p_i_item_sum_ - kd_ * derivative;
} else {
// 当比例部分的模式是 PonM 时,P-I-D 将是 PI-D,即比例和积分部分合并
output = p_i_item_sum_ - kd_ * derivative;
}
SetLimits(output);
last_input_ = input;
last_time_ = now;
last_output_ = output;
return output;
}
private:
double kp_;
double ki_;
double kd_;
double last_input_ = 0.0;
double last_output_ = 0.0;
double out_min_ = 0.0;
double out_max_ = 0.0;
uint64_t last_time_ = 0UL;
uint64_t sample_time_ = 1000UL; // 1 second
bool in_auto_ = false;
PID_DIRECTION pid_direct_ = PID_DIRECT;
// 标识 PID 比例部分的模式,true 表示 Proportional on Error(PonE),false 表示 Proportional on Measurement(PonM)
bool p_on_e_ = true;
// 比例和积分两个部分的累加值
double p_i_item_sum_ = 0.0;
uint64_t GetMillis() {
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
void SetLimits(double& val) {
if (val > out_max_) {
printf("val: %f > out_max_: %f\n", val, out_max_);
val = out_max_;
} else if (val < out_min_) {
printf("val: %f < out_min_: %f\n", val, out_min_);
val = out_min_;
} else {
; // Do nothing
}
}
};
}
int main() {
YCAO_PIDLIB::PIDController pid;
// 测试 PonM 模式
// 这个参数的运行结果就是被控量(水池温度)平滑的上升到设定值,不会出现超调
pid.set_tunings(0.5, 0.05, 0.0, YCAO_PIDLIB::PID_DIRECT, YCAO_PIDLIB::PID_P_ON_M);
pid.set_sample_time(1000);
pid.set_output_limits(0.0, 100.0);
// 假设我们控制的是一个恒温水池,我们希望将温度控制在 36 度,初始温度为20度
double setpoint = 36.0;
double temperature = 20.0;
std::this_thread::sleep_for(std::chrono::seconds(1));
pid.set_auto_mode(YCAO_PIDLIB::PID_MODE_AUTOMATIC, temperature);
for (int i = 0; i < 1000; ++i) {
double control_signal = pid.Compute(setpoint, temperature);
// 模拟锅炉加热,假设加热器效率为0.1,温度会损失0.01
temperature += control_signal * 0.1;
temperature *= 0.99;
std::cout << "Temperature: " << temperature << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
return 0;
}
3 总结
更高阶的 Arduino PID 算法库,读者可以自行研究:ArduPID-Library,Arduino-PID-AutoTune-Library/。
本文的代码托管在我的 github 上,每一个都可以独立运行。另外,我也写了一个简单的脚本,帮助大家快速测试,查看 README 即可,github 链接:pid_demo。