使用GridSearchCV对CatBoostClassifier分类器调参

本文介绍了如何使用GridSearchCV对CatBoostClassifier进行参数调优,详细解析了gridSearchCV的重要参数,并探讨了CatBoostClassifier的特点和优势,包括处理类别型特征的能力和防止过拟合的算法。在调参过程中,特别提到了分类特征的处理和one_hot_max_size的影响。
摘要由CSDN通过智能技术生成

实战:

def print_best_score(gsearch,param_test):
     # 输出best score
    print("Best score: %0.3f" % gsearch.best_score_)
    print("Best parameters set:")
    # 输出最佳的分类器到底使用了怎样的参数
    best_parameters = gsearch.best_estimator_.get_params()
    for param_name in sorted(param_test.keys()):
        print("\t%s: %r" % (param_name, best_parameters[param_name]))

params = {
   'depth': [4, 6, 10],
          'learni
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值